
COPYRIGHT NOTICE

c© 2016 IEEE. Personal use of this material is permitted. Permis-
sion from IEEE must be obtained for all other uses, in any current
or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any copy-
righted component of this work in other works.

This is the author’s version of the work. The definitive version was
published in IEEE Transactions on Parallel and Distributed Systems

(TPDS), 27(11):3256-3268, November 2016.

DOI: http://dx.doi.org/10.1109/TPDS.2016.2528984.

i

http://dx.doi.org/10.1109/TPDS.2016.2528984

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. V, NO. N, MONTH YYYY 1

GPU Strategies for
Distance-based Outlier Detection

Fabrizio Angiulli, Senior Member, IEEE, Stefano Basta, Stefano Lodi, and Claudio Sartori

Abstract—The process of discovering interesting patterns in large, possibly huge, data sets is referred to as data mining,
and can be performed in several flavours, known as ”data mining functions”. Among these functions, Outlier Detection discovers
observations which deviate substantially from the rest of the data, and has many important practical applications. Outlier detection
in very large data sets is however computationally very demanding and currently requires high-performance computing facilities.
We propose a family of parallel and distributed algorithms for Graphic Processing Units (GPU) derived from two distance-based
outlier detection algorithms: the BruteForce and the SolvingSet. The algorithms differ in the way they exploit the architecture
and memory hierarchy of the GPU and guarantee significant improvements with respect to the CPU versions, both in terms
of scalability and exploitation of parallelism. We provide a detailed discussion of their computational properties and measure
performances with an extensive experimentation, comparing the several implementations and showing significant speedups.

Index Terms—Distance-based outliers, outlier detection, parallel and distributed algorithms.

F

1 INTRODUCTION

In the last twenty years, the availability of cost-
effective data collection and storage hardware has
induced an unprecedented accumulation of very large
data sets in organizations of all dimensions and kinds.
The process whose aim is to discover interesting
patterns in such large data sets is referred to as data
mining [11]. Many problems related to fundamental
data mining tasks, like association rule discovery, data
clustering and classifier learning, are difficult [10],
[12], and also heuristic and approximate approaches
are computationally demanding in practice. For this
reason, a large amount of research in data mining
has been directed to the design of parallel and dis-
tributed algorithms for high-performance computing
architectures, in order to cope with the complexity
of data mining problems [24]. The vast majority of
non-sequential algorithms has been designed for the
Distributed Memory Machine (DMM), and utilized
on clusters of workstations or parallel supercomput-
ers. Recently, Graphic Processing Units (GPU) with
hundreds or thousands of cores have become widely

A preliminary version of this article appears in the Proceedings of the
International Conference on High Performance Computing & Simulation
(HPCS 2014) [4].

• F. Angiulli is with the DIMES Department, University of
Calabria, Via P. Bucci, 41C, 87036 Rende (CS), Italy. E-mail:
f.angiulli@dimes.unical.it.

• S. Basta is with the Institute of High Performance Computing and
Networking, Italian National Research Council, Via P. Bucci 41C,
87036 Rende (CS), Italy. E-mail: basta@icar.cnr.it.

• S. Lodi and C. Sartori are with the Department of Computer Science
and Engineering, University of Bologna, Viale Risorgimento 2, 40136
Bologna, Italy. E-mail: {stefano.lodi,claudio.sartori}@unibo.it.

available, and shared memory algorithms for fun-
damental data mining tasks exploiting the architec-
ture of such many-core graphic processors have been
proposed [8], [23]. GPU architectures are receiving
increasing attention justified by the fact that these
devices characterize computers that trade-off between
performance and power consumption. As a matter
of fact, according to the last update of the Green500
List, providing a ranking of the most energy-efficient
supercomputers in the world, the first 23 supercom-
puters are equipped with GPU accelerators.

Outlier detection is a data mining task consisting in
the discovery of observations which deviate substan-
tially from the rest of the data, raising the hypoth-
esis that they were generated by a different mech-
anism [11]. Outlier detection provides information
which is readily usable to react in critical situations;
therefore, it has many important practical applica-
tions in domains such as medical anomaly detection,
sensor networks, industrial damage detection, cyber-
intrusion detection, fraud detection, image processing,
and textual anomaly detection [9]. Outlier detection
is also quite computationally demanding, and its ap-
plication to very large data sets currently requires
high-performance computing facilities. For this rea-
son, non-sequential outlier detection algorithms have
already been proposed. However, besides the many
designed for DMMs [2], [3], [13], [16], [17], [20], there
are only a few for shared memory architectures, in
particular for execution on a GPU [1], [6], [18].

Our objective is to test the effectiveness of a GPU–
based solution for distance-based outlier detection;
the implementation is based on CUDA, a high–level
programming environment for GPU. Our contribu-
tions are the following:
• implementation for a GPU architecture of Brute-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. V, NO. N, MONTH YYYY 2

Force and SolvingSet algorithms, to be used as
baselines in comparisons;

• implementation of several variants, both central-
ized and distributed, of the above algorithms, to
experiment the effects of different usages of the
memory hierarchy and of different implementa-
tion and optimization techniques;

• execution of an extensive set of experiments,
including five different datasets, both synthetic
and real, with dimensionality from two to ten and
size up to 100 million of objects, implemented
and tested on a GPU hardware platform.

The structure of the paper is the following. Section 2
discusses the literature on parallel outlier detection.
Section 3 recalls the centralized algorithms and in-
troduces the GPU algorithms. Section 4 describes the
experimental setting and presents the results, mainly
in terms of speedup of the GPU algorithms with
respect to the CPU base algorithms, and section 5
concludes the paper.

2 RELATED WORK

Hung and Cheung [13] presented PENL, a parallel
version of NL [15], a block-oriented, I/O optimized
nested loop algorithm to detect (p, δ) outliers, defined
as objects lying within distance δ from at most a frac-
tion p of the objects of the data set. PENL omits outlier
ranking and an appropriate value of the parameter δ
must be determined.

A parallel version of Bay’s algorithm has been
proposed by Lozano and Acuña [17]. Bay’s algorithm
[7] iteratively loads consecutive blocks of objects in
main memory. For each block, it scans the data set and
for every retrieved object updates the neighborhood
of the objects in the block. A cutoff outlier score is
maintained; block objects having a score lower than
the current cutoff are removed from the block. The
outlier score is any function which is anti-monotonic
in the nearest neighbor distances. Any such function
can not increase under unions. Exploiting this fact, in
Lozano and Acuña’s algorithm, in every phase each
processor scans its local data set in parallel and up-
dates the neighborhood of the objects of the same data
block maintaining a local cutoff. The neighborhoods
are then merged at a master node, which distributes
the global cutoff to all processors. The definition of
distance-based outlier is compatible with ours. How-
ever, the scalability of the method is not consistent
and the sensitivity of the centralized version to the
order and distribution of the data are not discussed.

A parallel version of the Local Outlier Factor (LOF)
algorithm is proposed in the same paper [17]. In
LOF, the outlier status of a point is determined by
averaging the ratio of the density of the point and
a neighbor, over all the point’s k nearest neighbors.
The density of a point is computed as the inverse
of the averaged so-called reachability distances of the

point with respect to its k nearest neighbors, where
the reachability distance of a point p with respect to
a second point q selects either the k nearest neighbor
distance of q, if the p is one of q’s k nearest neighbors,
or the distance between the two points, otherwise. The
main complexity source in LOF is the computation of
the k nearest neighbors for all points. In Lozano and
Acuña’s parallel approach, each processor computes
the k nearest neighbors of its data. The master site
collects the results, computes the global neighbors
and the LOF of all points. Alshawabkeh, Jang, and
Kaeli [1] designed and tested an intrusion detection
system based on LOF. The authors show that their
GPU implementation outperforms a CPU implemen-
tation by up to two orders of magnitude, thereby
providing a practical method for intrusion detection.
Approaches based on LOF locally estimate density to
define outliers, and therefore discover more general
outliers than our approach does. But LOF essentially
employs a local k nearest neighbor estimate, resulting
in a overall higher complexity of the method.

The work [6] presents the LoKDR algorithm, which
seeks for the subset of features wherein normal data
points fall in high-density regions and outliers fall in
low-density regions of the feature space. Specifically,
the criterion function takes the ratio of the local neigh-
borhood density associated with inliers and outliers,
calculated by exploiting kernel density estimation. In
order to perform density estimation and to evaluate
the criterion function, authors provide a GPU-based
implementation of the method, which straightly takes
advantage of the data parallel nature of k-nearest
neighbor search and of the fact that the criterion
function can be evaluated independently on different
subsets of features. It is worth to notice that the
LoKDR approach is loosely related to our tasks, which
instead focuses on the discovery of the anomalies.
Furthermore, this algorithm is designed to the cen-
tralized scenario and, although exploits parallelization
through a GPU, the technical development concerning
this aspect mainly consists in exploiting well-known
efficient GPU-based k-NN searches and is a marginal
contribution within the proposal.

Techniques for parallel GPU-based k-nearest neigh-
bor search are also relevant in our context. Different
approaches to this problem have been proposed in the
literature. For a recent outlook we refer to [21].

3 ALGORITHMS

3.1 Weights and outliers

In the following, we assume a data set D of objects,
which is a finite subset of a given metric space.

Definition 3.1 (Outlier weight) Given an object p ∈
D, the weight wk(p,D) of p in D is the sum of the
distances from p to its k nearest neighbors in D.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. V, NO. N, MONTH YYYY 3

Definition 3.2 (Top n outliers) Let Top be a subset of
D having size n. If there not exist objects x ∈ T and y in
(D \ T) such that wk(y,D) > wk(x,D), then Top is said
to be the set of the top n outliers in D. In such a case,
w∗ = minx∈Top wk(x,D) is said to be the weight of the
top n-th outlier, and the objects in Top are said to be the
top n outliers in D.

3.2 Sequential algorithms

3.2.1 The BruteForce algorithm
The straightforward algorithm to detect top-n outliers
is a sequential nested–loop. The algorithm initially
creates a min heap Top of n elements to store the
top-n outliers and one max heap N of k elements for
each data point to store its k nearest neighbors. For
each data point P having index i, the points having
greater or equal index are accessed, and their distance
from P are inserted both into their own heap and
into the heap of P using the method updateMin . A
distance value is inserted into the heap by updateMin
if the heap is not full, or its maximum element exceeds
the value. In the latter case, the maximum element is
deleted. The method updateMax inserts the weight of
P into the outlier heap Top , if the heap is not full, or
the weight exceeds its minimum element. In the latter
case, the minimum element is deleted.

The worst-case complexity of the BruteForce algo-
rithm is Θ(|D|2 log k), and its best-case complexity is
Ω(|D|2), which makes it unsuitable for many data sets
in real data mining applications. However, it can be
readily noted that the outer loop of the algorithm fails
to omit points which cannot be outliers. Let us call
the sum of the distances of a point P = D[i] from
the points in its heap N [i] the current weight of P .
Obviously, if N [i] is full, then the current weight of
P cannot increase. Since the minimum weight w′ of
points in the outlier heap Top is a lower bound to
the weight of a top-n outlier, any point having a full
heap and a current weight smaller than w′ should be
excluded from further processing. This optimization
is part of the SolvingSet algorithm.

3.2.2 The SolvingSet algorithm
Definition 3.3 (Outlier Detection Solving Set) An
outlier detection solving set S is a subset S of D such
that, for each y ∈ D \ S, it holds that wk(y, S) ≤ w∗,
where w∗ is the weight of the top n-th outlier in D.

A solving set S always contains the set Top of the top
n outliers in D. Furthermore, a solving set can be used
to predict novel outliers [5]. Our goal is to compute
both a solving set S and the set Top.

The logic of of the SolvingSet algorithm is described
below, the meaning of the data set symbols is ex-
plained in Table 1. At each iteration (let us denote by j
the generic iteration number), the SolvingSet algorithm
compares all data set objects with a selected small

Input: Data set D , a distance dist(·, ·), integer numbers n, k, m, r = |D|.
Output: Solving set of D , set of the top-n outliers of D .

(1) SolvingSet(D , dist , n, k,m, r) {
(2) Vector<int> SolvSet [], C [m], act [r];
(3) Vector<Vector<float>> dm[m][r];
(4) MinHeap<int , float> Top[n], NextCand [m];
(5) MaxHeap<int , float> knn[r][k];
(6) RandomSelect(C ,m);
(7) while C .length 6= 0 {
(8) SolvSet .append(C);
(9) drop(D , C);

(10) parallel for i = 0 to C .length − 1
(11) for j = 0 to C .length − 1
(12) if i 6= j then updateMin(knn[C [i]], dist(D [C [i]], D [C [j]]));
(13) parallel for i = 0 to D .length − 1
(14) for j = 0 to C .length − 1 {
(15) if max(weight(knn[i]), weight(knn[C [j]])) ≥ min(Top)
(16) {d = dist(D [i], D [C [j]]);
(17) updateMin(knn[i], <C [j], d>);
(18) } else act [i] = 0;
(19) dm[j][i] = d; }
(20) parallel for j = 0 to C .length − 1
(21) for i = 0 to D .length − 1 updateMin(knn[C [j]], <i, dm[j][i]>)
(22) updateTopCand(C , knn, act); }
(23) return(〈SolvSet , Top〉); }

Fig. 1. The SolvingSet-MV algorithm.

subset of the overall data set, called Cj (for candidate
objects), and stores their k nearest neighbors with
respect to the set C1 ∪ . . . ∪ Cj . From these stored
neighbors, an upper bound to the true weight of each
data set object can thus be obtained. Moreover, since
the candidate objects have been compared with all the
data set objects, their true weights are known. The
objects having weight upper bound lower than the n-
th greatest weight associated with a candidate object,
are called non active (since these objects cannot belong
to the top-n outliers), while the others are called ac-
tive. At the beginning, C1 contains randomly selected
objects from D, while, at each subsequent iteration
j, Cj is built by selecting, among the active objects
of the data set not already inserted in C1, . . . , Cj−1
during the previous iterations, the objects having the
maximum current weight upper bounds. During the
computation, if an object becomes non active, then it
will not be considered anymore for insertion into the
set of candidates, because it cannot be an outlier. As
the algorithm processes new objects, more accurate
weights are computed and the number of non active
objects increases. The algorithm stops when no more
objects have to be examined, i.e. when all the objects
not yet selected as candidates are non active, and thus
Cj becomes empty. The solving set is the union of the
sets Cj computed during each iteration.

Performance improvements can be obtained by ex-
ploiting parallelism in the computation of neighbor
lists. Figure 1 shows algorithm SolvingSet-MV, which
realizes SolvingSet for a parallel multi-core environ-
ment. The sequential realization of SolvingSet [5],
loops for each object pair in D − ∪ji=1Ci and current
candidates Cj , computing the distance and updating
the neighbor lists of the objects if necessary. Whatever
the loop ordering, a parallelization of the outer loop
causes conflicts in the update of shared neighbor lists,

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. V, NO. N, MONTH YYYY 4

which accounts for a substantial part of the run time
and therefore should not be enclosed in a critical
region for efficiency. A better alternative consists in
splitting the loop: first, the neighbors of D−∪ji=1Ci are
updated and the distances are cached into a m× |D|
candidate-point distance matrix dm (lines (13)–(19));
then, max heaps of candidates are updated from the
cached distances (lines (20)–(21)). In dm, rows are
ordered by candidate to enable local access in the
second loop. Function at line (22) updates the top-n
outliers and sets the active objects with the m largest
weights as candidates for the next iteration.

3.3 Fermi GPU basics

In this paper we refer explicitly to the CUDA Fermi
GPU architecture, produced by NVIDIA, on which we
developed our prototypes. This device allows thread
parallelism, threads are grouped in blocks, blocks are
grouped in grids, each thread executes the same piece
of code, the kernel function. A grid is an array of thread
blocks that execute the same kernel, read inputs from
global memory, write results to global memory, and
synchronize between dependent kernel calls. In the
CUDA parallel programming model, each thread has
a per–thread private memory space used for register
spills, function calls, and C automatic array variables.
Each thread block has a per–block shared memory
space used for inter–thread communication, data shar-
ing, and result sharing in parallel algorithms. Grids of
thread blocks share results in Global Memory space
after kernel–wide global synchronization [19].

3.4 Parallelizing the BruteForce algorithm

The BruteForce algorithm is amenable to paralleliza-
tion by assigning threads to different portions of the
distance matrix and updating nearest neighbor heaps
efficiently. For the comparisons with our proposals,
we implemented two GPU algorithms following the
above sketched approach, according to [14].

3.4.1 GPU-BruteForce
Kato and Hosino [14] presented a technique to com-
pute on a GPU the result of a set of k nearest
neighbors queries A solution to such problem can be
easily exploited for solving the top-n outlier problem,
in two steps: after computing a k nearest neighbor
list for each point, the points are ranked according to
their weight. In the first step, the distance matrix is
divided into groups of consecutive rows. Each group
is assigned to a block and each row in the group is
assigned to a thread of the block. Each thread loads a
column of the matrix into the shared memory of the
block, and computes the distance between the points
corresponding to the row and column. In the second
step, matrix cells in the same row, separated by a
stride that equals the number of threads in the block,

Object Allocation Meaning
D Host Data set as a list of points
E Device Data set as an array of points
Cand Host Candidates as a list of pairs of points and indices
C Device Array of candidates
N Device Array of max heaps containing at most k nearest

neighbors of data points and their distances.
LN Device Array of max heaps containing at most k near-

est neighbors of candidate points and their dis-
tances.

H Device Array of intermediate min heaps in reductions
LC Device Array of min heaps. Each heap contains at most

m candidates for the next iteration.
distM Device Matrix of floats
Top Host Min heap of the top-n outliers
SolvSet Host Solving set as a list of points

TABLE 1
Variables defined in GPU-SolvingSet algorithms.

are assigned to a thread. The assigned cell values are
inserted into a thread buffer when they are smaller
than the k-th nearest neighbor distance of a max heap
pertaining to the block. The buffer elements are then
inserted into the heap. Finally, using a multiblock
reduction technique, the points having the n largest
weights are selected.

3.4.2 GPU-BruteForce-SH

A variant of the previous algorithm employs a differ-
ent, simpler technique to update the heaps. To each
point a thread is assigned, which updates the heap of
the point by inserting all distances into it. Distances
are computed using the same technique utilized in
GPU-BruteForce.

3.5 The GPU-SolvingSet family of algorithms

We describe a family of parallel (Sections 3.5.1-3.5.3)
and distributed (Section 3.5.4) algorithms, based on
the concept of solving set, and differing by the opti-
mizations employed to exploit the memory hierarchy
and the architecture of a GPU. GPU-SolvingSet is our
basic GPU algorithm for computing top-n outliers.

The host part of our algorithms is described
as object-oriented pseudo-code. In this part, iden-
tifiers beginning with GPU name wrapper proce-
dures which call GPU kernels. In particular, GPUExec
designates a generic wrapper for the execution of
kernels. The device parts are described as structured
kernel pseudo-code, which uses conventional prede-
fined variables that correspond to the ones available
in CUDA: threadId , blockId , blockDim and numBlocks
denote the thread and thread block identifiers, the
number of threads in a thread block, and the number
of thread blocks in the current grid, respectively. Data
structures will be allocated both in global device
memory and fast shared memory. Shared structures
are explicitly declared in kernels. Variables in device
memory and host objects are summarized in Table 1.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. V, NO. N, MONTH YYYY 5

Input: Data set D , a distance function dist(·, ·), integer number n of
outliers, integer number k of nearest neighbors, integer number m of
candidate points.
Output: Solving set of D , set of the top-n outliers of D .

(1) GPUSolvingSet(D , dist , n, k,m) {
(2) PointSet SolvSet = new PointSet();
(3) MinHeap Top = new MinHeap(n);
(4) Point [] Cand = new Point [m];
(5) float [] CandW = new float [m];
(6) GPUAlloc(E , C , N , LN , H , LC , distM);
(7) Cand = D .RandomSelect(m);
(8) GPUCopyFromHost(C , Cand);
(9) while Cand .length 6= 0 {

(10) GPUExec(Init(E , C , N , LN));
(11) SolvSet .append(C);
(12) GPUSync();
(13) GPUExec(CToC(C , LN , k, dist));
(14) GPUSync();
(15) GPUExec(DToC1(E , C , N , LN , Top.min(), k, dist , distM));
(16) GPUSync();
(17) GPUExec(DToC2(E , C , LN , Top.min(), k, distM));
(18) GPUSync();
(19) for i = 1 to Cand .length {CandW [i] = getDistSum(LN [i])}
(20) GPUSync();
(21) GPUExec(Candidate(C , LC));
(22) for i = 1 to Cand .length {
(23) Top.updateMax(Cand [i], CandW [i]); }
(24) GPUSync();
(25) GPUCopyToHost(Cand , C); }
(26) return(〈SolvSet , Top.getElements()〉);

Fig. 2. The GPU-SolvingSet algorithm.

CToC(C , LN , k, dist) {
i = blockDim · blockId + threadId;
for j = 0 to |C | − 1 {

Q = C [j]; d = dist(C [i], Q); updateMin(LN [i], 〈Q , d〉); } }

Fig. 3. Neighbors of candidates w.r.t. candidates.

3.5.1 GPU-SolvingSet
The bounded nested loops in SolvingSet, computing
parts of the distance matrix can be executed by
parallel threads in a GPU; however, the incremental
computation of neighbors has to be dealt with care,
and can be implemented by different techniques.

The main procedure of the algorithm is described
in Figure 2; it runs on the CPU and consists of an
initialization sequence and a while loop which calls
GPU kernels, until no more candidates are available.
The solving set SolvingSet, the top-n outlier min heap
Top, the candidates Cand, and their weights CandW
are stored on and initialized by the host. In particular,
Cand is initialized to a randomly selected m-subset of
D. In the while loop, kernel Init subtracts candidates
from the current on-device array of points E and
compacts the array by moving substitute points to
their locations. Then, current candidates are added
to the solving set. Next, the k nearest neighbors of
candidates in the data set and the k nearest neighbors
of data points with respect to candidates are updated
in three steps by kernels CToC , DToC1 , and DToC2 ,
described in Figures 3, 6, and 8, respectively. Phase
DToC2 also collects the candidates for the next iter-
ation. Figure 4 shows an example dataset, including
the solving set and the outliers. Figure 5 sketches the
computations performed by kernel CToC . This kernel

Fig. 4. Example data set

Candidates C

q0

q1

q2

q3

q4
 q5

Solving Set S

s0

s1
 s2

s3

s4

s5

k-=-6

n--=-10

m--=-6

thread-0

thread-1

thread-2

thread-3

thread-4
 thread-5

Distances
computed
by thread-0

k-NN of
q0 w.r.t S

Fig. 5. Sketch of the CToC kernel computations.

computes the k nearest neighbors of each candidate in
the set of current candidates C and stores them into
the max heap of the candidate, which is an element of
array LN . To this end, each thread of CToC computes
the distances between all candidates and a fixed can-
didate C [i] which is uniquely assigned to the thread.
The neighbors of C [i] and their distances are inserted
into a max heap LN [i] of size k by updateMin , which
is analogous to updateMin in sequential algorithms.
GPU-SolvingSet then improves the neighbor list of
points in E in kernel DToC1 , extends the k nearest
neighbors of candidates in C to all E in DToC2 , and
selects the candidates for the next iteration.

Kernel DToC1 in Figure 6 computes the distances
between E and C , and updates the array N of max
heaps of nearest neighbors of points in E . The com-
putations of this thread are sketched in Figure 7. Each
thread in DToC1 is uniquely associated to an index i
in E , and iterates over C . A candidate and its distance
to E [i] are inserted into max heap N [i] when the
weight upper bound of E [i], or of the candidate, is not
smaller than the current minimum outlier weight, in
Top and passed as minWeight . The distance between
E [i] and the candidate is also stored in the distance
matrix distM ; row j of distM stores the distances
between the candidate with index j and all data points
in E . If the condition is not met, an infinite distance
value is stored in the matrix cell.

In DToC2 , processor assignment and memory al-
location are crucial for efficiency. The assignment
of a single thread to each candidate for computing

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. V, NO. N, MONTH YYYY 6

DToC1(E , C , N , LN ,minWeight, k, dist , distM) {
i = blockDim · blockId + threadId;
for j = 0 to |C | − 1 {

Q = C [j];
if max(DistSum(N [i]), DistSum(LN [j])) ≥ minWeight

then { d = dist(E [i], Q);
if DistSum(N [i]) ≥ minWeight

then updateMin(N [i], 〈Q , d〉); }
else d =∞;

distM [j][i] = d; } }

Fig. 6. Neighbors of data points w.r.t. candidates.

q0

q1

q2

q3

q4
 q5

s0

s1

s2

s3
s4
s5

k+=+6

n++=+10

m++=+6

Candidates C
Solving Set S
Dataset D

p0

p(d61)

p1
 p2

p3

p4

thread+0

thread+1

thread+2

thread+3

thread+4

thread+(d61)

Distances
computed
by thread+0

k-NN of
q0 w.r.t S

Fig. 7. Sketch of the DToC1 kernel computations.

updates to its nearest neighbors max heap does not
fully utilize computing capacity, as the candidates are
fewer than the processors. On the other hand, the
assignment of one thread to each data point, which
iterates through candidates to update their neighbors,
generates conflicts on their max heaps LN , because all
threads access the same heap synchronously. In our
implementation, a thread block is assigned to each
candidate, that is, to each row of the current distance
matrix portion, and each thread visits cells with stride
blockDim . The outcome is max heap LN [blockId] con-
taining the k nearest neighbors of the candidate.

Kernel DToC2 is described in Figure 8. Shared
array nbHeap of blockDim per-thread max heaps in
function CandNN is used in the selection of the k
nearest neighbors of a candidate. A shared max heap
cdHeap is also used in the selection of the points
having largest weights as candidates for the next
iteration. DToC2 is executed in a grid of |C | + 1
thread blocks, in which each block among the first |C |
selects the k nearest neighbors of a distinct candidate,
and the last block selects m points having the largest
weights. The initial conditional statement separates
the paths. In function CandNN , called by the “then”
part, each thread in a block processes a subset of row
blockId of matrix distM . Recall that row distM [blockId]
stores the distances from candidate indexed blockId
in C to all data points. To this end, the thread vis-
its points with stride blockDim , starting from point
threadId , and inserts the distance between the point
and candidate blockId into heap nbHeap[threadId].
Each thread executes MaxHeapReduction , described
in Figure 9, a reduction of the heaps in a thread
block in the heap of thread 0, which finally merges

DToC2(E , C , LN ,minWeight, k, distM) {
shared MinHeap cdHeap[blockDim];
if blockId < |C |

then CandNN(E , C , LN ,minWeight, k, distM);
else {
i = threadId;
while i < |E | {

if E [i].active
then if DistSum(N [i]) ≥ minWeight

then updateMax(cdHeap[threadId],
〈i, E [i], DistSum(N [i])〉);

else E [i].active = false;
i = i + blockDim; }

synchronize();
MinHeapReduction(threadId, cdHeap, blockDim/2);
if threadId == 0

then minHeapMerge(LC [threadId], cdHeap[0]); } }

CandNN(E , C , LN ,minWeight, k, distM) {
shared MaxHeap nbHeap[blockDim];
if DistSum(LN [blockId]) < minWeight then return;
i = threadId;
while i < |E | {

updateMin(nbHeap[threadId], 〈E [i], distM [blockId][i]〉);
i = i + blockDim; }

synchronize();
MaxHeapReduction(threadId, nbHeap, blockDim/2);
if threadId == 0 then maxHeapMerge(LN [blockId], nbHeap[0]); }

Fig. 8. Neighbors of candidates w.r.t. data points.

maxHeapMerge(H1 , H2) {
for i = 1 to H2 .length do updateMin(H1 , H2 .get(i)); }

MaxHeapReduction(t, maxHeap, h) {
while h ≥ 1 {

if t < h then maxHeapMerge(maxHeap[t], maxHeap[t + h].get(i));
if h > 32 then synchronize();
h = h/2; } }

Fig. 9. Merging and reducing max heaps.

its heap with the heap of the candidate, LN [blockId].
The function exits immediately for all threads of block
blockId if the corresponding candidate cannot be a
top-n outlier, because its current weight is smaller
than parameter minWeight , the n-th outlier weight
lower bound. In the “else” part, the threads of a single
block process interleaved subsets of the data set. A
point is processed only if its active field is set. If its
weight is not lower than minWeight , then it is inserted
into the min heap of thread cdHeap . Otherwise, it
cannot be a top-n outlier and is marked as nonactive.
After synchronization, shared heaps are hierarchically
merged into the heap of thread zero, which finally
copies it to the output heap variable LC . In the last
steps of the main loop (lines 19–25), the exact weights
of current candidates are computed from heap array
LN and written into array CandW ; candidates are
then copied from max heap LC to the candidate set C
in device memory. Max heap Top of current best top-n
outliers is updated; finally the candidates for the next
iteration are copied into program object Cand .

3.5.2 Variants of GPU-SolvingSet with reduced
space requirements

The matrix of distances between the data set and the
candidates arising in real outlier detection problems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. V, NO. N, MONTH YYYY 7

(1) for i = 1 to Cand .length {
(2) j = Cand .getIndex(i); Q = Cand .get(i);
(3) GPUExec(DToC1NDM(E , C , N , LN , Q , j,
(4) Top.min(), k, dist , H)); }
(5) GPUExec(DToC2NDM(LN , k, H));
(6) GPUSync();
(7) GPUExec(WeightUpd1(E , N , H ,m, Top.min()));
(8) for i = 1 to Cand .length {
(9) CandW [i] = getDistSum(LN [i]); }

(10) GPUSync();
(11) GPUExec(WeightUpd2(LC , H ,m));

Fig. 10. Modified code in GPU-SolvingSet-NDM.

DToC1NDM(E , C , N , LN , Q , j,minWeight, k, dist , H) {
shared MaxHeap nbHeap[blockDim];
i = blockId · blockDim + threadId;
while i < |E | {

if max(DistSum(N [i]), DistSum(LN [j])) ≥ minWeight
then { d = dist(E [i], Q);

updateMin(N [i], 〈Q , d〉);
updateMin(nbHeap[threadId], 〈E [i], d〉); }

i = i + blockDim · numBlocks; }
synchronize();
MaxHeapReduction(threadId, nbHeap, blockDim/2);
if threadId == 0 then H [j][blockId] = nbHeap[0]; }

Fig. 11. Neighbors in GPU-SolvingSet-NDM.

can be very large, compared to high-bandwidth GPU
memory. We describe GPU-SolvingSet-NDM, a variant
to GPU-SolvingSet, which does not store the entire dis-
tance matrix in device memory, and a second variant,
GPU-SolvingSet-NDM-TP, which also allocates tempo-
rary heaps in shared memory during reductions.

3.5.2.1 GPU-SolvingSet-NDM: The algorithm
differs from GPU-SolvingSet at lines 15–18, which
are replaced by the code in Figure 10. In this
variant, both the computation of nearest neighbors
of data points and candidates, and the selection
of points having largest weights are split into two
phases. Kernel DToC1NDM , described in Figure 11,
is called once for each candidate, to update the
nearest neighbor max heaps N and LN of data
points and candidates, respectively. The kernel is
executed in a grid of numBlocks thread blocks of
blockDim threads each, and employs a max heap
array nbHeap of size blockDim in each block. Each
thread in a block manages a unique heap in the array
to store neighbors of the candidate parameter Q .
Points are visited starting from a unique point
among the first blockDim · numBlocks , and continuing
with stride blockDim · numBlocks . Each thread thus
computes the distance between Q and each one
of |D|/(numBlocks · blockDim) points and inserts
it into the max heap N [i] of the point, as well
as into max heap nbHeap[threadId], by executing
the respective updateMin functions; the distance is
inserted only into a non-full heap or when its max
element is larger than the distance. Threads are then
synchronized and each thread in parallel executes
function MaxHeapReduction . At each iteration, each
heap having index t smaller than h absorbs the entire
heap at index distance h, and h is halved. Note that in

DToC2NDM(k, LN , H) {
shared MaxHeap nbHeap[blockDim];
t = threadId;
while t < numBlocks {

maxHeapMerge(nbHeap[threadId], H [blockId][t]);
t = t + blockDim; }

synchronize();
MaxHeapReduction(threadId, nbHeap, blockDim/2);
if threadId == 0 then

maxHeapMerge(LN [blockId], nbHeap[0]); }

Fig. 12. Reduction of heaps in GPU-SolvingSet-NDM.

DToCTP1(E , C , N , LN , Q , j,minWeight, k, dist , H1) {
i = blockId · blockDim + threadId;
while i < |E | {

if max(DistSum(N [i]), DistSum(LN [j])) ≥ minWeight
then {
d = dist(E [i], Q);
updateMin(N [i], 〈Q , d〉);
if |LN [j]| < k ∨ d < DistMax(LN [j])

then updateMin(H1 [threadId], 〈E [i], d〉); }
i = i + blockDim · numBlocks; } }

DToCTP2(k, j, H , H1) {
shared MaxHeap nbHeap[blockDim];
t = threadId;
while t < blockDim1 · numBlocks1 {

maxHeapMerge(nbHeap[threadId], H1 [t]);
t = t + blockDim · numBlocks; }

synchronize();
MaxHeapReduction(threadId, nbHeap, blockDim/2);
if threadId == 0 then H [j][blockId] = nbHeap[0]; }

Fig. 13. Neighbors of candidates and data in GPU-
SolvingSet-NDM-TP.

CUDA all threads in the same warp are automatically
synchronized; since only threads having index in
the set {0, 1, . . . , h − 1} execute heap updates, and
a warp consists of 32 threads having contiguous
indices, only iterations for h > 32 need an explicit
synchronization at their end. At function exit, the
blockDim max heaps of each thread block have been
merged in shared memory yielding one heap for each
thread block in nbHeap[0]. Since shared memory
is local to a block, the resulting heap is stored in
device memory by thread 0 into an array of heaps
H [j, blockId], which is indexed by candidate and
block identifier. In the following step of Figure 10,
heaps in device memory are merged by candidate
by kernel DToC2NDM described in Figure 12. The
kernel takes three parameters k, LN , and H . Note
that H is the same heap matrix which is assigned to
in the last line of DToC1NDM and that by numBlocks
we denote the number of blocks in the execution
grid of DToC1NDM , which equals the number
row elements, or of heaps per candidate, stored in
device memory in H . The kernel is executed by one
thread block per candidate. Each thread in blockId
absorbs the heaps for candidate having index blockId
in the candidate set, with stride blockDim , into an
initially empty max heap nbHeap in shared memory.
Per-thread heaps are then merged hierarchically into
the heap of the first thread of each block, which
finally merges it into heap LN . The subsequent steps

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. V, NO. N, MONTH YYYY 8

for i = 1 to Cand .length {
j = Cand .getIndex(i); Q = Cand .get(i);
DToCTP1(E , C , N , LN , Q , j, Top.min(), k, dist , H1);
GPUSync();
DToCTP2(k, j, H , H1);
GPUSync(); }

Fig. 14. Modified loop in GPU-SolvingSet-NDM-TP.

CandNN(E , C , LN , Top.min(), k, distM);
GPUSync();
GPUExec(WeightUpd1(E , N , H ,m, Top.min()));
for i = 1 to Cand .length {CandW [i] = getDistSum(LN [i]); }
GPUSync();
GPUExec(WeightUpd2(LC , H ,m));

Fig. 15. Modified code in GPU-SolvingSet-S.

select the most promising candidates for the next
iteration and update the active status of data set
points. Kernel WeightUpd1 is executed in a grid
of blockDim · numBlocks thread blocks, in which
each thread is associated to a data point. The kernel
uses a shared array nbHeap of blockDim per-thread
min heaps in each thread block to select the points
having largest weight, visiting points with a stride
of blockDim · numBlocks to cover the whole data set.
A hierarchical merge of the min heaps stores the m
points with largest weights visited by each block into
the per-block min heap H [blockId]. In parallel with
kernel execution, the weights of the candidates of
the current iteration are copied from device memory
into program memory. After the synchronization
barrier, each thread of of a single thread block
in kernel WeightUpd2 visits the min heap array
H with a stride of blockDim , merging the visited
heaps into its own heap nbHeap[threadId]. Finally,
the per-thread heaps are hierarchically merged into
nbHeap[0], which is then copied into LC .

3.5.2.2 GPU-SolvingSet-NDM-TP: As data points
are associated to threads in DToC1NDM , a many
threads are employed by the kernel, thus requiring a
large amount of shared memory in per-thread heaps
and possibly limiting processor occupancy. This prob-
lem is approached in GPU-SolvingSet-NDM-TP by
further splitting kernel DToC1NDM into two parts,
both reported in Figure 13. Furthermore Figure 14
shows a modified loop which substitutes the first one
in Figure 10. The first part, DToCTP1 , iterates over
data points as DToC1NDM , but inserts neighbors to
candidates into a max heap array H1 in global mem-
ory, and does not perform any hierarchical reduction.
Each thread of the second part, DToCTP2 , merges into
its per-thread max heap nbHeap the heaps in array
H1 , iterating through its elements with stride equal
to the total number of threads blockDim · numBlocks .
The iteration bound refers to the number of threads
blockDim1 and the number of blocks numBlocks1
of kernel DToCTP1 . After a synchronization barrier,
a hierarchical reduction merges per-thread heaps of

WeightUpd1(E , N , H ,m,minWeight) {
shared MinHeap nbHeap[blockDim];
i = blockId · blockDim + threadId;
while i < |E | {

if E [i].active ∧ DistSum(N [i]) ≥ minWeight
then updateMax(nbHeap[threadId], 〈i, E [i], DistSum(N [i])〉);
else E [i].active = false;

i = i + blockDim · numBlocks; }
synchronize();
MinHeapReduction(threadId, nbHeap, blockDim/2);
if threadId == 0 then H [blockId] = nbHeap[0]; }

WeightUpd2(LC , H ,m,numBlocks) {
shared MinHeap nbHeap[blockDim];
i = threadId;
while i < numBlocks {

minHeapMerge(nbHeap[threadId], H [i]);
i = i + blockDim; }

synchronize();
MinHeapReduction(threadId, nbHeap, blockDim/2);
if threadId == 0 then LC = nbHeap[0]; }

Fig. 16. Best candidates update in GPU-SolvingSet .

each block into nbHeap[0], which is then copied to the
global heap element pertaining to candidate j and the
current block. The final reduction of the global heap
matrix rows H [j] is performed by kernel DToC2NDM .

3.5.3 Variants of GPU-SolvingSet
3.5.3.1 GPU-SolvingSet-S: Lines 17–20 are re-

placed by the code in Figure 15, combining CandNN
of Figure 8 to compute the nearest neighbors of can-
didates, and functions WeightUpd1 and WeightUpd2 ,
shown in Figure 16, to select candidates for the next
iteration, thus operating as lines 6–11 in Figure 10.

3.5.3.2 GPU-SolvingSet-S-MS: Kernel CandNN
is substituted by kernel CandNNMS , which splits
the execution in steps to stop iterations early. Per-
thread max heaps nbHeap are declared in kernel
CandNNMS , shown in Figure 17, as in CandNN .
However, the single while loop is substituted by
nested while loops to allow for a finer flow con-
trol. The outer loop divides the computation of
LN [blockId] into nSteps steps and verifies at the be-
ginning of each step that the candidate assigned to
the block cannot be ruled out as a top-n outlier,
by checking that its current weight upper bound,
computed from LN [blockId], is not smaller than
minWeight . In each step, after resetting the per-
thread heap nbHeap[threadId], the inner loop iterates
through stepSize elements of the matrix portion row
distM [blockId], with stride blockDim as in the previous
implementation, inserting pairs of neighbors and dis-
tances into the per-thread heap. After the synchroniza-
tion barrier, per-thread max heaps are hierarchically
merged into the heap of the first thread, which is
finally merged into LN [blockId]. As in CandNN , an
early return is executed by all threads of block blockId
if candidate blockId cannot be a top-n outlier.

3.5.4 Distributed approach
To take full advantage of state-of-the-art supercom-
puters, we designed the GPU-DistributedSolvingSet al-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. V, NO. N, MONTH YYYY 9

CandNNMS(E , C , LN ,minWeight, k, distM) {
shared MaxHeap nbHeap[blockDim];
if DistSum(LN [blockId]) < minWeight then return;
nSteps = |E |/stepSize; s = 0; i = threadId;
while s < nSteps ∧ DistSum(LN [blockId]) ≥ minWeight {

nbHeap[threadId].size = 0;
while i < (s + 1) · stepSize ∧ i < |E | {
d = distM [blockId][i];
updateMin(nbHeap[threadId], 〈D[i], d〉);
i = i + blockDim; }

synchronize();
MaxHeapReduction(threadId, nbHeap, blockDim/2);
if threadId == 0 then maxHeapMerge(LN [blockId], nbHeap[0]);
s = s + 1; } }

Fig. 17. Heaps update in GPU-SolvingSet-S-MS.

gorithm, representing a combined distributed and
many-core approach to the computation of the top-
n outliers, which merges the features of the LazyDis-
tributedSolvingSet [3] with the GPU-SolvingSet.

It is assumed that the global data set D is hor-
izontally partitioned into ` local datasets Di located
at local nodes Ni and that a supervisor node N0 is
connected to all Nis by a high-performance network.
The GPU-DistributedSolvingSet algorithm runs at N0

the LazyDistributedSolvingSet algorithm (cf. Figure 3
in [3]), and at nodes Ni the NodeCompi procedures.
Each procedure NodeCompi performs the computation
within the main cycle of the GPU-SolvingSet algorithm
(cf. Figure 2, lines (10)-(25)) on its own Di.

The supervisor works as follows. The current set
of candidates (initially randomly selected) is added
to the solving set and broadcast to local nodes where
procedures NodeCompi are executed. Local nodes re-
turn the local nearest neighbors of each candidate and
also a set of candidates for the next iteration. The su-
pervisor exploits the local nearest neighbors in order
to determine the true weight of current candidates
and update the top-n outliers. The computation ends
when there are no more candidates to consider.

As for the local nodes, when the distance matrix to
be materialized does not fit into the device memory,
the local dataset Di is partitioned in a suitable number
of chunks and computations are performed on a per
chunk basis by running the kernels multiple times.

3.6 Cost analysis
Let Np denote the number of threads that can be si-
multaneously executed on the GPU. In the following,
we assume the hypothesis of optimal thread alloca-
tion. W.l.o.g., it is assumed that the cost of computing
the distance between two objects is O(d), where d is
the number of attributes of each object. Moreover, by
F it is denoted the number of bytes employed to store
a floating point number or an integer number.

3.6.1 GPU-SolvingSet
Consider the DToC1 kernel. Each thread computes the
distance between a fixed dataset object and all the
m candidates and updates the heap of its k nearest
neighbors. Thus, the cost in charge of each thread is

O(m(d+ log k)) and the temporal cost of executing N
threads is

O

(
m

N

Np
(d+ log k)

)
.

Consider now the DToC2 kernel. Then number of
threads associated with this kernel is (m+1)Nt, where
m+1 is the number of blocks executed, while Nt is the
number of threads per block. During the executing of
the portion of code preceding the parallel reduction,
each thread populates an heap of k (m, resp.) elements
by inspecting disjoint subsets of the distance matrix
(of the object weights, resp.) each having size N

Nt
. This

costs O(N
Nt

log(max{k,m})) operations per thread.
As for the parallel reduction, it requires logNt

steps during which each involved thread merges
two heaps of k (m, resp.) elements, with temporal
cost max{k,m} log(max{k,m}), thus with total tempo-
ral cost O(max{k,m} log(Nt) log(max{k,m})). Over-
all, the cost is

(m+ 1)Nt

Np
· N
Nt
·
(
log(max{k,m})+

+ log(Nt)max{k,m} log(max{k,m})
)
.

For simplicity, assume that k ≥ m (for otherwise,
in what follows it suffice to replace k with m). Hence,
after simplifying, the total temporal cost of this kernel
is proportional to

O

(
m

N

Np
logNt · (k log k)

)
.

As for the update of the heap Top of the top n outliers,
its cost is negligible, amounting to O(m log n).

Putting things together, the temporal cost of the
GPU-SolvingSet algorithm is

O

(
tm

N

Np

(
d+ logNt · (k log k)

))
,

where t denotes the number of main iterations per-
formed by the method until reaching convergence.

As for the space cost, consider the device mem-
ory occupancy: the dataset occupies NdF bytes, the
heaps storing the k nearest neighbor distances occupy
N(k + 1)F bytes, and the distance matrix requires
NmF bytes. The total amount of global memory
needed is hence O(N(d+ k +m)F).

As for the shared memory occupancy, this kind of
memory is employed mainly for storing the interme-
diate heaps employed by the kernel DToC2 . Main-
taining all the heaps associated with threads within
the same block requires Nt(k+1)F bytes (Nt(m+1)F
bytes, resp.).

3.6.2 GPU-SolvingSet-NDM and GPU-SolvingSet-
NDM-TP
Here, Nb denotes the number of blocks (also denoted
as numBlocks in the pseudo-code) and Nt the number
of threads per block (also denoted blockDim in the
pseudo-code). Hence, the total number of threads
which are executed per kernel is NbNt.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. V, NO. N, MONTH YYYY 10

The temporal cost of DToC1NDM is

O

((
NbNt

Np

)
·
(

N

NbNt

)
· (d+ log k)

)
,

where NbNt is the total number of threads executed,
N

NbNt
is the number of distances per thread, d is the

cost of computing distances, and log k is the cost of
updating heaps.

The parallel reduction in shared memory performed
at the end of the kernel DToC1NDM costs

O

((
NbNt

Np
logNt

)
· (k log k)

)
,

since its depth is logNt (due to the necessity to merge
the Nt heaps of each block) and k log k is the cost
of merging heaps. At the end of this reduction we
have Nb heaps, one for each block, containing the k
smallest distances among the current candidate and
the objects processed by the threads belonging to the
same block. These heaps are stored in device memory
in a bi-dimensional data structure of m rows (one
for each candidate) and Nb columns (one for each
block of the kernel DToC1NDM). This data structure
occupies Nb(k + 1)mF bytes and substitutes the data
matrix employed by GPU-SolvingSet algorithm, which
instead occupies NmF bytes. Thus, in order to save
space it must be guaranteed that Nb(k + 1) < N .

From now we use the notation Nb1 and Nt1 (Nb2
and Nt2, resp.) to denote the values for the param-
eters Nb and Nt employed in kernel DToC1NDM
(DToC2NDM , resp.). Summarizing, the cost of the
loop involving lines 1-6 in Figure 10 is

O

(
m

(
N

Np
(d+ log k) +

(
Nb1Nt1

Np
logNt1

)
· (k log k)

))
.

Kernel DToC2NDM takes care of merging the Nb1
heaps associated with the k nearest neighbors in the
Nb1 blocks of each current candidate. The number
of blocks Nb2 of this kernel equals the number m of
candidates (hence Nb2 = m), while the number Nt2 of
threads per block is sensibly smaller than the number
of blocks of the preceding kernel (hence Nt2 � Nb1),
since the threads in the same block are in charge
of merging the Nb1 heaps pertaining to the same
candidate object. The cost of the while loop of kernel
DToC2NDM is

O

((
Nb2Nt2

Np

)
·
(
Nb1

Nt2

)
· (k log k)

)
≡ O

(
m

Nb1

Np
k log k

)
,

while the parallel reduction at the end of kernel costs

O

(
Nb2Nt2

Np
logNt2k log k

)
≡ O

(
m

Nt2

Np
logNt2k log k

)
.

Assuming that Nt2 logNt2 < Nb1 (recall that Nt2 �
Nb1 holds) the latter cost is subsumed by the former
one, which in its turn is subsumed by the cost of the
parallel reduction of kernel DToC1NDM .

As for kernels WeightUpd1 and WeightUpd2 that are
in charge of determining the candidates for the next
iteration, their cost determination is similar to that of
the two previous kernels, leading to

O

((
N

Np

)
· logm+

(
NbNt

Np
logNt

)
· (m logm)

)
.

For the sake of simplicity, assume that k ≥ m. Since
these kernels are executed t times, the temporal cost
of GPU-SolvingSet-NDM algorithm is eventually

O

(
tm

Np

(
N(d+ log k) +NbNt logNt · (k log k)

))
.

Since NbNt � N , the cost of algorithm GPU-
SolvingSet-NDM is dominated by the cost of algorithm
GPU-SolvingSet.

During the execution of the kernel DToC1NDM
each thread allocates its own max heap of k elements
in shared memory. In order to alleviate this cost,
the GPU-SolvingSet-NDM-TP algorithm avoids this
allocation by employing the kernels DToCTP1 and
DToCTP2 in place of DToC1NDM .

3.6.3 GPU-SolvingSet-S and GPU-SolvingSet-S-MS
Kernel CandNN pretty corresponds to the first branch
of the kernel DToC2 , having cost

O

(
m

Np

(
N log k +Nt logNt · (k log k)

))
,

which also corresponds to the worst case tem-
poral cost of kernel CandNNMS . Since kernel
CandNN (CandNNMS , resp.) is the heaviest opera-
tion performed by algorithm GPU-SolvingSet-S (GPU-
SolvingSet-S-MS, resp.), the final cost of this algorithm
is

O

(
tm

Np

(
N log k +Nt logNt · (k log k)

))
,

which is in its turn dominated by the cost of the
algorithm GPU-SolvingSet-NDM.

4 EXPERIMENTS

4.1 Experimental setting and datasets
We ran the distributed experiments and the
SolvingSet-MV algorithm on Intel Haswell processors
running at 2.40 GHz and hosting an NVIDIA Tesla
K80 GPU with 4992 cores and 24GB of global
memory, while for the other centralized CPU/GPU
codes we used an Intel Xeon processor running at
2.40 GHz and hosting an NVIDIA Tesla M2070 GPU
with 448 cores and 6GB of global memory. The CPU
code is run on a single CPU core and makes use only
of scalar single precision floating point operations.
The codes are written in Java and the NVIDIA CUDA
Toolkit 4.1 is used for the GPU.

As for the CUDA parameters, we point out that
each experiment has been preceded by the execution
of a tuning phase aimed to guarantee an optimal
configuration for the run at hand. This step has been
carried by a code module providing the values to
be assigned to the CUDA parameters used by the
algorithms. In particular this module, which is the
same for all the algorithms, works by taking into
account the hardware specifications, the algorithm to
be used and the settings of the running experiment,
which are depending on the dataset to be mined and
on the parameters for detection task.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. V, NO. N, MONTH YYYY 11

For a given kernel function f , the aim of the pa-
rameter tuning module is to determine the optimal
values (Nopt

b , Nopt
t) for the CUDA parameters Nb,

number of thread blocks, and Nt, number of threads
per block, respectively. The module reaches its goal
by determining the values for Nb and Nt that allow
to reach a pre-defined level of occupancy. Occupancy
is a metric related to the number of active warps on
a multiprocessor which is important in determining
how effectively the hardware is kept busy. Occupancy
is the ratio of the number of active warps per multi-
processor to the maximum number of possible active
warps. The hardware specifications are characteristic
of the GPU model on which the algorithm is run
and are already known to the module. Among these
characteristics there are the Threads per Multiprocessors,
the Thread Blocks per Multiprocessor, the Shared Memory
per Multiprocessor, and others (for a complete list,
see the NVIDIA CUDA GPU Occupancy Calculator).
Given the value of the parameter k, which represents
an input of the module, and a certain value for
the CUDA parameter Nt (the Threads per Block), the
Registers per Thread and the Shared Memory per Block
can be obtained from the kernel function f structure.
These three parameters are also referred to as resource
usage parameters. The module must also take into
account some contraints associated with the specific
kernel. E.g., in some cases Nt is required to be a
power of two since a reduction has to be performed,
while when the kernel makes use of a data structure
whose size is related to the block size, the shared
memory per block depends on Nt. The combination
of the resource usage parameters and of the hard-
ware specifications allows to directly compute the
occupancy. Higher occupancy does not always equate
to higher performance, since there is a point above
which additional occupancy does not improve per-
formance. However, low occupancy always interferes
with the ability to hide memory latency, resulting in
performance degradation. Based on the literature, we
selected as a rule of thumb to not exceed occmax = 0.5
occupancy [22]. Hence, the module enumerates all the
admissible values for the parameter Nt and selects the
pairs (N ′b, N

′
t) associated with the largest occupancy

not greater than occmax. We notice that the cost in
charge of each kernel is directly proportional to the
number of thread blocks. Moreover, during the tuning
phase we verified that for a fixed number of threads
per block, the best performance is obtained by taking
the smallest number of thread blocks guaranteeing the
pre-defined level of occupancy. Thus, among the pairs
(N ′b, N

′
t), the pair (N∗b , N

∗
t) is selected by minimizing

the value N ′b, by taking either the minimum or the sec-
ond minimum. The optimal number of thread blocks
can be eventually obtained as Nopt

b = N∗b ·P , where P
is the number of multiprocessors. If Nb is set by the
user, it is preferable that Nb ≥ Nopt

b and a multiple of

Nopt
b . As for the optimal numer of threads per block

Nopt
t , it is set to Nopt

t = N∗t .
In the experiments, we considered the following

five datasets: G3d, synthetic, contains 500,000 3-d
vectors; Covtype, real, includes 581,012 instances of
10 attributes; G2d, synthetic, collection of 1,000,000
2-d vectors; Poker, real, consists of 1,000,000 objects
of 10 attributes; 2Mass, real, contains 1,623,376 3-d
instances. Further details on previous datasets are
included in [3].

In the sequel, if not otherwise stated, the values for
the detection task parameters, are n = 10, k = 50,
and m = 100. We considered also other combinations
of values for the above parameters, but the results are
not completely reported in the paper, since the behav-
ior of the algorithms does not change significantly.

For the sake of brevity, in the sequel we shorten
algorithm names by using uppercase characters.

4.2 Comparison of the basic strategies

In this section, CPU-BF, CPU-SS, GPU-BF, GPU-BF-SH,
GPU-SS, and CPU-SS-MV algorithms are compared.

In the first experiment the G2d dataset has been
employed. In particular, the parameter k has been
fixed to 5, the dataset size has been varied between
100K and 500K by sampling, and the execution time
has been measured. Figure 18(a) reports the speedup
of the methods with respect to the CPU-BF algorithm
for k = 5. From the figure, it appears that the trend of
the speedup is approximatively monotonically non-
decreasing with the dataset size for all the methods
tested. As for the various methods considered, the
GPU-BF exhibits a great speedup, amounting to two
orders of magnitude. For the larger dataset instance
here considered, the speedup of GPU-BF approaches
400, a very satisfactory result. This behavior witnesses
that the GPU-BF algorithm here proposed is able to
fully exploit the GPU features. As far as the GPU-
BF-SH method, the exhibited speed up is also good
(two orders of magnitude), though lower than that
of GPU-BF. The CPU-SS method has a considerable
speedup with respect to the CPU-BF one. Clearly, this
is expected since the CPU-SS is like an optimized
version of the CPU-BF. However, the curves show
that CPU-SS outperforms even the GPU-BF and GPU-
BF-SH algorithms. As a matter of fact, the CPU-SS
technique, already introduced in the literature in [5], is
able to vastly reduce the number of distance computa-
tions so that it outperforms even optimal parallelized
versions of the CPU-BF algorithm. As far as GPU-SS is
concerned, the experiment confirms that the strategy
here employed to parallelize on the GPU is able to
achieve time savings with respect to both the CPU-SS
and the GPU/CPU-based versions of the brute force
approach. We will elaborate on the relative speedups
later in the section.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. V, NO. N, MONTH YYYY 12

1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

10
1

10
2

10
3

10
4

10
5

Dataset size

CPU−SS

GPU−BF

GPU−BF−SH

GPU−SS

(a) k = 5

1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

10
1

10
2

10
3

10
4

10
5

Dataset size

CPU−SS

GPU−BF

GPU−BF−SH

GPU−SS

(b) k = 10

1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

10
1

10
2

10
3

10
4

10
5

Dataset size

CPU−SS

GPU−BF

GPU−BF−SH

GPU−SS

(c) k = 50

Fig. 18. Speedup over CPU-BF on G2d for various values of k.

G3d Covtype Poker G2d 2Mass
0

5

10

15

20

25

30

35

40

45

50

CPU−SS
GPU−BF
GPU−BF−SH
GPU−SS
CPU−SS−MV

(a) k = 5

G3d Covtype Poker G2d 2Mass
0

5

10

15

20

25

30

35

40

45

50

CPU−SS
GPU−BF
GPU−BF−SH
GPU−SS
CPU−SS−MV

(b) k = 10

G3d Covtype Poker G2d 2Mass
0

5

10

15

20

25

30

35

40

45

50

CPU−SS
GPU−BF
GPU−BF−SH
GPU−SS
CPU−SS−MV

(c) k = 50

Fig. 19. Speedup over CPU-SS for various values of k.

Figures 18(b) and 18(c) show the speedup of the
methods for k = 10 and k = 50. In general, the behav-
ior above described is maintained, the only difference
concerns the GPU-BF and GPU-BF-SH methods for
k = 50. In this case, the best speedup of GPU-BF-
SH doubles, while the speedup GPU-BF gets smaller,
though the order of magnitude of the speedup re-
mains the same. However, it must be noticed that on
the whole dataset GPU-BF comes back to outperform
GPU-BF-SH (this datum is shown later in this section).
In general, it can be observed that the speed up of the
GPU versions of the CPU-BF worsens when k gets
larger. For k = 50, that is the largest value of k here
considered, the speedup of GPU-BF-SH gets better of
that of GPU-BF. Thus, it can be concluded that GPU-
BF is sensitive to the value of the parameter k.

Figures 19(a)-19(c) report the speedup of the vari-
ous methods w.r.t. CPU-SS for k ∈ {5, 10, 50} on the
datasets G3d, Covtype, Poker, G2d, and 2Mass. The fig-
ures highlight that CPU-SS outperforms GPU-BF and
GPU-BF-SH on all the datasets except for Covtype. In
order to understand this behavior, the ratio between
the number of distances computed by CPU-SS and the
number of pairwise distances has been measured. The
results are reported in the table below.

k = 5 k = 10 k = 50
G2d 0.13% 0.11% 0.15%
G3d 0.34% 0.40% 0.64%
Covtype 5.05% 4.07% 6.83%
2Mass 0.67% 0.42% 0.04%
Poker 2.49% 1.59% 1.84%

Clearly, Covtype is the most demanding dataset for the

CPU-SS method, as in this case the relative number
of distances computed corresponds about to the 5%
of the worst case number, that is the total number
of pairwise distances among dataset objects and also
the number of distances in charge of the brute force
methods. Notice that in the GPU-based versions of
the brute force method these distances are subdivided
among all the GPU cores. Hence, for a GPU having
448 cores, the relative number of distances computed
by each core amounts to 0.22%. By comparing this
load with the values reported in the previous table it
can be recognized a relationship between the distance
computation savings obtained by CPU-SS and the
speedup of GPU-BF and GPU-BF-SH w.r.t. CPU-SS.

We also measured the speedup of CPU-SS-MV. It
can be observed that its performances are directly re-
lated both to the number of distances to be computed
and the size of the dataset and are inversely related to
the number k of nearest neighbors, and that the GPU
version GPU-SS is able to achieve larger speedup.

Summarizing, in these experiments the speedup the
GPU-SS may achieve over CPU-BF is enormous: up to
four orders of magnitude. The CPU-SS method has a
speedup over GPU-BF and GPU-BF-SH of one order
of magnitude. Differently, the speed up of GPU-BF
and GPU-BF-SH over CPU-BF is larger: two orders
of magnitude, which is of the same order of the
CUDA cores available on the GPU. However, as for
the comparison of GPU-SS to CPU-SS the speedup is
reduced (one order of magnitude: up to 45 times).

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. V, NO. N, MONTH YYYY 13

G3d Covtype Poker G2d 2Mass
0

10

20

30

40

50

60

70

80

90

100

110

CPU−SS
GPU−SS
GPU−SS−NDM
GPU−SS−NDM−TP
GPU−SS−S
GPU−SS−S−MS

(a) k = 5

G3d Covtype Poker G2d 2Mass
0

10

20

30

40

50

60

70

80

90

100

110

CPU−SS
GPU−SS
GPU−SS−NDM
GPU−SS−NDM−TP
GPU−SS−S
GPU−SS−S−MS

(b) k = 10

G3d Covtype Poker G2d 2Mass
0

10

20

30

40

50

60

70

80

90

100

110

CPU−SS
GPU−SS
GPU−SS−NDM
GPU−SS−NDM−TP
GPU−SS−S
GPU−SS−S−MS

(c) k = 50

Fig. 20. Speedup over CPU-SS for various values of k.

This confirms that the brute force approach can ex-
ploit parallel architectures more efficiently than the
solving set algorithm However, there is still room for
improvements as accounted for in the next section.

4.3 Comparison of the GPU-SS variants
In this section, the CPU/GPU SolvingSet-based algo-
rithms analysed in the earlier sections are compared.
Specifically, the following algorithms are taken into
account: GPU-SS (the basic method computing the
full distance matrix), GPU-SS-NDM (the variant of the
GPU-SS which does not materialize the full distance
matrix and which stores the heaps in shared memory),
GPU-SS-NDM-TP (the variant of the previous GPU-
SS-NDM which stores the heaps in global memory
during distance calculations and in shared memory
during reduction), GPU-SS-S (the variant of the GPU-
SS which uses two kernels to separately compute the
updateMin and the updateMax operations), GPU-SS-
S-MS (the variant of the previous GPU-SS-S method
which optimizes the executions of updateMin oper-
ations by splitting the entire calculation in multiple
steps), and CPU-SS.

Figures 20(a)-20(c) report the relative performance
of the methods w.r.t. CPU-SS for k ∈ {5, 10, 50} on all
the datasets previously considered. As for GPU-SS-
NDM, it can be seen that for small values of the pa-
rameter k the strategy guarantees improvements over
GPU-SS, while for large k values it performs worse.
As for GPU-SS-NDM-TP, from the experiment this
strategy does not seem to offer particular advantages
neither over GPU-SS-NDM nor over GPU-SS. Hence,
it can be concluded that the reduced shared memory
occupancy of GPU-SS-NDM-TP variant is counterbal-
anced by the major cost to be paid on the additional
operations involving the global memory. As for GPU-
SS-S, the figures show a noteworthy improvement
either over GPU-SS or over the two earlier variants.
Finally, as for GPU-SS-S-MS, this variant presents a
performance quite similar to its parent version (i.e.
GPU-SS-S) for small values of k, whereas it offers a
significant advantage for k = 50.

Thus, these experimental results make clear what
are the scenarios most suitable for the presented

strategies and what are the improvements that can
be obtained by each of them. Naturally, GPU-SS-S-MS
offers the best performance, whereas GPU-SS-NDM
allows to reduce execution time with respect to the
CPU version (and for k < 50 also with respect to GPU
base version) maintaining a space cost lower than that
of GPU-SS and of all the variants. Hence, GPU-SS-
NDM could be the only applicable solving set GPU-
based strategy on very large dataset (demanding very
large amount of memory resources) or in the case the
available hardware is limited in terms of storage.

4.4 Speedup of GPU-DSS

Figure 21 on the left shows the speedup S` = T1/T`
of GPU-DSS exploiting GPU-SS-S-MS at local nodes,
where T` denotes the execution time when ` local
nodes are employed, for k = 5. Here, we consid-
ered three additional synthetic data sets, called 5G2d,
10G2d, and 100G2d, which have been generated in
the same manner as G2d, but consist of 5, 10, and 100
million of instances, respectively. The figure highlights
that the speedup increases with the size of the data to
be processed. This behavior depends on two factors.
The first one is the ratio between the supervisor node
time and the total execution time. It can be seen from
Figure 21 on the right that this ratio is sensible for
the smallest dataset (up to 18%), and becomes less
influential as the dataset size grows (less than 0.5%
for the largest dataset). The second factor is the ratio
between the dataset size and the device memory.
We notice that the local dataset was not partitioned
into chunks except for the first two executions of
the largest dataset. This explains why the speedup
tends to the ideal one for the three first datasets and
why the curve of the last dataset exhibits initially a
superlinear growth (up to 5 nodes) and then slows
down approaching the unitary growth rate.

5 CONCLUSIONS
Due to the complexity of state-of-the-art algorithms
for distance-based outlier detection, they may be im-
practical in on-line applications requiring short re-
sponse times or handling very large data sets. Start-
ing from the baseline sequential BruteForce and the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. V, NO. N, MONTH YYYY 14

0 2 4 6 8 10
0

5

10

15

20

Number of nodes

G2d
5G2D
10G2D
100G2D

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

Number of nodes

G2d
5G2D
10G2D
100G2D

Fig. 21. Speedup (left) and ratio between the supervi-
sor time and the total execution time (right).

SolvingSet algorithms, we implemented several GPU
algorithms, both centralized and distributed. Some of
them are aimed to find the best way to parallelize
operations in the given architecture and memory hier-
archy, other to reduce memory occupancy, and there-
fore more suitable for very large data sets. We have
conducted an extensive set of experiments, including
both real and synthetic large data sets, and we found a
remarkable consistency of performance across data set
sizes. To assess performance improvements, we have
considered also a multicore version of the solving
set algorithm, though the design of fully optimized
multicore and hybrid CPU/GPU strategies deserves
further investigation that we leave as a subject for
future work. The experiments show that the approach
is quite effective, with the speedup of the centralized
strategies reaching two orders of magnitude in the
best cases. The best results are given by the variants
which explicit address the best usage of the parallel
threads and memory hierarchy rather than the vari-
ants with a reduction of memory occupancy. As for
the distributed approach, experiments highlight that
ts speedup over the centralized GPU algorithm tends
to the ideal one for datasets of increasing sizes.

REFERENCES
[1] M. Alshawabkeh, B. Jang, and D. Kaeli. Accelerating the

local outlier factor algorithm on a gpu for intrusion detection
systems. In GPGPU, pages 104–110, 2010.

[2] F. Angiulli, S. Basta, S. Lodi, and C. Sartori. A distributed
approach to detect outliers in very large data sets. In Euro-Par
(1), pages 329–340, 2010.

[3] F. Angiulli, S. Basta, S. Lodi, and C. Sartori. Distributed strate-
gies for mining outliers in large data sets. TKDE, 25(7):1520–
1532, 2013.

[4] F. Angiulli, S. Basta, S. Lodi, and C. Sartori. Accelerating
outlier detection with intra- and inter-node parallelism. In
HPCS, pages 476–483. IEEE, 2014.

[5] F. Angiulli, S. Basta, and C. Pizzuti. Distance-based detection
and prediction of outliers. TKDE, 18(2):145–160, 2006.

[6] F. Azmandian, A. Yilmazer, J. G. Dy, J. A. Aslam, and D. R.
Kaeli. Gpu-accelerated feature selection for outlier detection
using the local kernel density ratio. In ICDM, p. 51–60, 2012.

[7] S. D. Bay and M. Schwabacher. Mining distance-based outliers
in near linear time with randomization and a simple pruning
rule. In KDD, 2003.

[8] C. Böhm, R. Noll, C. Plant, and B. Wackersreuther. Density-
based clustering using graphics processors. In CIKM, pages
661–670, 2009.

[9] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection:
A survey. ACM Comput. Surv., 41(3):15:1–15:58, 2009.

[10] D. Gunopulos, R. Khardon, H. Mannila, S. Saluja, H. Toivonen,
and R. S. Sharma. Discovering all most specific sentences.
Trans. Database Syst., 28(2):140–174, 2003.

[11] J. Han, M. Kamber, and J. Pei. Data Mining: Concepts and
Techniques. 3rd edition, 2011.

[12] P. Hansen and B. Jaumard. Cluster analysis and mathematical
programming. Mathematical Programming, 79:191–215, 1997.

[13] E. Hung and D. W. Cheung. Parallel mining of outliers in large
database. Distributed and Parallel Databases, 12(1):5–26, 2002.

[14] K. Kato and T. Hosino. Solving k-nearest neighbor problem
on multiple graphics processors. In CCGRID, p. 769-773, 2010.

[15] E. Knorr and R. Ng. Algorithms for mining distance-based
outliers in large datasets. In VLDB, pages 392–403, 1998.

[16] A. Koufakou and M. Georgiopoulos. A fast outlier detection
strategy for distributed high-dimensional data sets with mixed
attributes. Data Min. Knowl. Discov, 2009 (Published online).

[17] E. Lozano and E. Acuña. Parallel algorithms for distance-
based and density-based outliers. In ICDM, p. 729-732, 2005.

[18] T. Matsumoto and E. Hung. Accelerating outlier detection
with uncertain data using graphics processors. In PAKDD II,
pages 169–180, 2012.

[19] NVIDIA Corporation. NVIDIA’s next generation CUDA com-
puting architecture: Fermi. Technical report, NVIDIA, 2009.

[20] M. E. Otey, A. Ghoting, and S. Parthasarathy. Fast distributed
outlier detection in mixed-attribute data sets. Data Min. Knowl.
Discov., 12(2-3):203–228, 2006.

[21] N. Sismanis, N. Pitsianis, and X. Sun. Parallel search of k-
nearest neighbors with synchronous operations. In HPEC,
pages 1–6, 2012.

[22] V. Volkov. Better performance at lower occupancy. Proceedings
of the GPU Technology Conference, GTC, 10, 2010.

[23] R. Wu, B. Zhang, and M. Hsu. Clustering billions of data
points using GPUs. In UCHPC-MAW, pages 1–6, 2009.

[24] M. J. Zaki and Y. Pan. Introduction: Recent developments in
parallel and distributed data mining. Distributed and Parallel
Databases, 11(2):123–127, 2002.

Fabrizio Angiulli received the Laurea de-
gree in Computer Engineering in 1999 from
the University of Calabria (UNICAL). In 2001
he joined the ICAR Institute of the Italian
CNR. Since 2006, he is with the DIMES
Dept. of the UNICAL, where he is currently
an Associate Professor of Computer Sci-
ence. In 2013, he obtained the Full Professor
qualification. His research interests include
data mining and artificial intelligence.
Stefano Basta received the PhD degree
in Systems Engineering and Informatics in
2000 from University of Calabria. Since
2000, he is Researcher for the Institute of
High Performance Computing and Network-
ing (ICAR) of Italian CNR. His research in-
terests include logic programming, deductive
databases, knowledge representation, infor-
mation integration, and data mining.
Stefano Lodi received the PhD degree in
computer science and electronic engineer-
ing in 1993 from the University of Bologna.
He is an associate professor of Systems
for Information Processing at the University
of Bologna. His research interests include
data clustering and classification by support
vector machines in distributed and stream-
ing environments, and semantic peer-to-peer
systems.
Claudio Sartori is Full Professor in Systems
for Information Processing, in the Depart-
ment of Computer Science and Engineering
of the University of Bologna. He has been
doing research since 1984 in databases, in-
formation systems, artificial intelligence, dis-
tributed and peer-to-peer systems, data min-
ing. He is the director of the graduate pro-
gram ”Computer Engineering”, in the Univer-
sity of Bologna.

