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Scaling Up Support Vector Machines Using Nearest
Neighbor Condensation

Fabrizio Angiulli and Annabella Astorino

Abstract—In this brief, we describe the FCNN-SVM classifier, which
combines the support vector machine (SVM) approach and the fast
nearest neighbor condensation classification rule (FCNN) in order to make
SVMs practical on large collections of data. As a main contribution, it
is experimentally shown that, on very large and multidimensional data
sets, the FCNN-SVM is one or two orders of magnitude faster than SVM,
and that the number of support vectors (SVs) is more than halved with
respect to SVM. Thus, a drastic reduction of both training and testing
time is achieved by using the FCNN-SVM. This result is obtained at the
expense of a little loss of accuracy. The FCNN-SVM is proposed as a viable
alternative to the standard SVM in applications where a fast response time
is a fundamental requirement.

Index Terms—Classification, large data sets, training-set condensation,
nearest neighbor rule, support vector machines (SVMs).

I. INTRODUCTION

The objective of pattern classification is to find a rule, based on ex-
ternal observation, to assign an object to exactly one among several
classes. Many algorithms have been indeed devised for automatically
distinguishing among different samples on the basis of their patterns.
A well-known supervised classification technique is the support vector
machine (SVM) algorithm (see [5], [15], [16], and [18]). For many
applications, the SVM method, alone or in combination with other
methods, yields superior performance with respect to other machine
learning options. In general, SVMs work very well in practice, have
a small number of tunable parameters in comparison with neural net-
works, and tend towards global solutions.

Training an SVM is equivalent to solving a convex quadratic pro-
gramming (QP) problem characterized by a dense, positive–semidefi-
nite matrix with a number of rows equal to the number of training data
points. Thus, it is a real challenge to deal with practical applications
where the data set is made up of thousands of points. In fact, just com-
puting the matrix for the QP problem is expensive and one may not
be able to store it. Moreover, the computing time for solving the QP
problem is�����, where� denotes the number of training examples,
while the space complexity is �����; these may become prohibitive
on large training sets. More in general, applying SVMs on large training
sets requires a drastic increase of memory, training time, and prediction
time. Indeed, prediction time is proportional to the number of support
vectors (SVs), which still increases with the number of data points.

Many algorithms and implementation techniques have been devel-
oped for efficiently training SVMs for massive data sets. Among them
we mention decomposition techniques and data reduction techniques.
Decomposition techniques speed up the SVM training by dividing the
original QP problem into smaller pieces, thereby reducing the size of
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each QP problem. They are among the first proposals to speedup SVMs.
Well-known decomposition techniques are the “chunking” algorithm
[3], Osuna’s decomposition algorithm [13], and the sequential minimal
optimization (SMO) [14]. A potential disadvantage of these techniques
is that they may need a long training time because they usually require
to execute many passages over the data set to reach a reasonable level
of convergence. These techniques are at present natively supported by
standard SVM tools, as LIBSVM [4].

Different data reduction techniques have been proposed for making
the training data of manageable size. The principal idea of this ap-
proach is that a subsampling of the training set may speed up a classi-
fier. This can be achieved by randomly removing training points or by
selecting some significant samples and ignoring others that can be ab-
sorbed, or represented, by those selected. Among the data reduction ap-
proaches for SVM proposed in the literature there are the reduced sup-
port vector machine (RSVM) [11] and its related variants [8], [10], the
cross-training algorithm [2], and the clustering-based SVM (CB-SVM)
algorithm [20].

In this brief, we introduce a data reduction method for SVMs, called
FCNN-SVM, with the goal of making them scalable to very large data
sets. The FCNN-SVM couples the SVM algorithm with the fast nearest
neighbor condensation algorithm [1]. Differently from other methods,
the FCNN-SVM is based on selection criteria which are guided by the
decision boundary rather than by sampling and clustering like tech-
niques, and it can be applied to any kind of data and kernel function.

As a main contribution, it will be experimentally shown that the
FCNN-SVM scales well on large and high-dimensional data sets and
that it is one or two orders of magnitude faster than the SVM. More-
over, the FCNN-SVM noticeably reduces the size of the model, since,
in most cases, the number of SVs is more than halved with respect to
the SVM. Thus, a drastic reduction of both training and testing times
is achieved by using the FCNN-SVM. As far as test accuracy is con-
cerned, the FCNN-SVM exhibits a little loss of accuracy.

The rest of this work is organized as follows. Section II introduces
the FCNN-SVM classifier. Section III experimentally compares the
FCNN-SVM and the standard SVM. Finally, Section IV summarizes
contributions and concludes the brief.

II. THE FCNN-SVM RULE

The FCNN-SVM combines two well-known classification rules,
namely, the SVM and the nearest neighbor condensation. As for the
definition of SVM and for the nearest neighbor condensation rule the
reader is referred to [5], [15], [16], and [18], and to [1], [6], [7], [9],
[17], and [19], respectively.

The strong point of SVMs is that they permit to build a classifier
which maximizes generalization performances. Nevertheless, their
training is costly. The SVs are critical points near the boundary
between the two classes, which determine an optimal separating
hyperplane. It must be noted that removal of training points that
are not SVs has no effect on the hyperplane selection. If one could
approximate the right SVs before the training process, then both
computing time and memory usage of the SVM would be reduced,
and an optimal separating hyperplane could be found by training the
SVM on a relatively smaller number of selected points.

From the point of view of the generalization properties, the nearest
neighbor rule is not as good as SVM. Nonetheless, a training set which
is a consistent subset for the nearest neighbor rule can be found quite
efficiently by using the FCNN algorithm [1]. The FCNN method selects
a subset of the overall data set having the robust property of correctly
classifying the rest of the data set and being mostly composed by points
close to the decision boundary. Hence, using the FCNN to reduce the
amount of data on which the SVM has to be trained is expected to
provide a method with a profitable tradeoff between execution time
and prediction accuracy.

Fig. 1. Example of the FCNN-SVM training.

Given a training set � , the FCNN-SVM classifier is built in two
steps.

1) Compute a training set consistent subset � of � for the nearest
neighbor rule through the FCNN algorithm.

2) Train an SVM on the consistent subset �.
After selecting a subset of training points having the property of ap-
proximating the decision boundary (step 1), a separating hyperplane
can be obtained by training an SVM on this subset (step 2).

Fig. 1 shows an example of FCNN-SVM training on a 2-D data
set consisting of 121 points in the plane. Fig. 1(a) reports the original
training set, composed by two well-separated classes. In Fig. 1(b),
the SVs (circled points) are highlighted together with the decision
boundary of an SVM trained with parameter � � ��� and using a
radial basis function (RBF) kernel with � � �. Say SVM���� is the
above defined classifier (using 26 SVs). Fig. 1(c) shows the FCNN
subset (circled points) and the decision boundary of the FCNN rule
trained on the original data set. The FCNN subset is composed of 31
points. Note that these points are very close to the decision boundary
and most of them coincide with the SVs of the SVM���� classifier. Fi-
nally, Fig. 1(d) shows the SVs (the 24 circled points) and the decision
boundary of the SVM trained on the FCNN subset with parameter
� � ��� and using an RBF kernel with � � � that are the SVs and
the decision boundary of the FCNN-SVM rule.

Note that while the decision boundary of the FCNN classifier is
rather crisp, the decision boundary of the FCNN-SVM classifier is
smooth and more accurate. The decision boundary of the FCNN-SVM
classifier is practically identical to the decision boundary of the SVM
classifier, but it has been obtained at a reduced computational cost,
since the training has been accomplished on just the 31 points returned
by the FCNN algorithm instead of the 121 points of the overall input
training set. Moreover, the number of SVs of the FCNN-SVM classi-
fier is slightly smaller than the number of SV of the standard SVM.

There are different variants of the basic FCNN algorithm. In the
following, we make use of the FCNN2 variant (see [1]), which is the
fastest one. As far as the temporal cost of the FCNN-SVM method is
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TABLE I
EXPERIMENTS ON SMALL DATA SETS

TABLE II
FURTHER EXPERIMENTS ON SMALL DATA SETS

concerned, let � be the number of examples in the input training set
� , and let � be the size of the training set consistent subset �, then the
FCNN algorithm has cost�����.1 Since the cost of the SVM is cubic
in the size of the input training set, the temporal cost of the FCNN-SVM
is��������, which is at most quadratic in the input training set size
and cubic in the consistent subset size. The value � depends on the
characteristics of the data set, but usually it holds that �� � , with �
corresponding to a few percent of the whole data set size � [1].

1The spatial cost of the FCNN algorithm is also �����.

III. EXPERIMENTAL RESULTS

In this section, several experiments involving the FCNN-SVM are
described. The performance of the FCNN-SVM rule2 has been com-
pared with that of LIBSVM [4].

Experiments are organized as follows. We present first the experi-
ments on small data sets, in order to compare data reduction and clas-
sification accuracy (Section III-A). Of course, the advantages in terms
of temporal cost of the FCNN-SVM rule can be appreciated only when
very large data sets have to be processed, which are accounted for in
Section III-B. Finally, in Section III-C, we consider some families of
synthetical data sets in order to point out both advantageous and critical
scenarios for the FCNN-SVM method.

A. Small Data Sets

We applied both FCNN-SVM and SVM on some test problems
drawn from the classification literature that are BUPA Liver, Cleveland
Heart, Pima Indians, Ionosphere, Letter Recognition, and Image
Segmentation, all from the University of California at Irvine (UCI)
Machine Learning Repository [12].

2The Euclidean distance was employed by the FCNN as distance measure.
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Fig. 2. Experiments on the DARPA 1998 data set.

To make the choice of the free parameters, we considered the fol-
lowing combinations of values on a finite grid:

Penalty � ��� � �� ���

Kernel Type Linear RBF Poly
RBF-parameter ���� ��� �

Poly-parameter � �

Classification accuracy (Acc.), measured through tenfold cross valida-
tion, and number of SVs are reported in Table I (values for � � �� are
not reported in the table due to space limitations). It can be observed
that the optimal parameters for the SVM may in general be different
from the optimal ones for the FCNN-SVM.

Moreover, for each data set, we have considered a thinner grid of pa-
rameter values in the intervals where the SVM method showed a regu-
larly near-optimal behavior in terms of testing classification accuracy
and number of SVs; Table II shows the results of these experiments.

As far as the classification accuracy is concerned, the FCNN-SVM
exhibits a loss of accuracy with respect to the SVM, and this can be
explained as a consequence of the great reduction of number of SVs.
Table I shows that the FCNN-SVM is more sensitive to the selection
of parameters, since its classification accuracy presents a greater vari-
ability with respect to that of the SVM. However, if we select the op-
timal values of accuracy, either the accuracies of the two methods are
comparable or the FCNN-SVM presents a small loss.

B. Scaling Analysis on Very Large Data Sets

In this section, the scaling analysis of the FCNN-SVM and of the
SVM on three very large data sets,3 that are DARPA 1998, Forest
Cover, and Checkerboard, is accomplished.

3Experiments were performed on an Intel Core 2 Duo (single core) 1.83-GHz-
based machine with 1 GB of main memory and the Windows operating system.

DARPA 1998 is obtained from the Defense Advanced Research
Projects Agency 1998 intrusion detection evaluation data4 and it
is composed of 458 301 real vectors each having 23 features, one
of which stating whether the vector is associated with a network
attack. Forest Cover5 consists of 581 012 instances each having 54
attributes. Instances are partitioned into seven classes. Checkerboard
is a synthetically generated data set composed of 1 000 000 points into
the unit square. A � � � checkerboard partitions the points into two
classes associated with white and black cells of the board.

For each data set, we extracted six random samples of increasing size
to form six training sets. Among the remaining objects, we also picked
a random sample to form the associated test set.

In particular, on the DARPA 1998 and Forest Cover data sets we con-
sidered the same grid of parameters used for the small data sets (Figs. 2
and 3 report some of these experiments; the missing ones showed a very
similar behavior). Since the SVM was very slow on these two data sets,
it was not executed on the largest samples. On the Checkerboard, we
considered only one single combination, which is the RBF kernel with
� � ��� and � set to 500, since by using these parameters, the SVM
performs remarkably well in terms of classification accuracy.

Fig. 2 shows the results of the experiments on the DARPA 1998 data
set. The first row of the figure reports the execution times. As an ex-
ample, when the linear kernel with � � �� was used on half of the
data set, the FCNN-SVM terminated in about 17 s, while the SVM
employed about 7500 s (a difference of more than two orders of mag-
nitude). Likewise, for all the other kernels, the difference of execution
time remained of about the same order. The second row reports the SVs.
We observe that the reduction achieved by the FCNN-SVM is notice-
able. In almost all cases the number of SVs of the FCNN-SVM is less

4http://www.ll.mit.edu/IST/ideval/index.html
5http://kdd.ics.uci.edu/databases/covertype/covertype.html
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Fig. 3. Experiments on the Forest Cover data set.

Fig. 4. Experiments on the Checkerboard data set.

than half that of the SVM; e.g., by using a polynomial kernel of degree
2 and � � ���, the number of SVs of the FCNN-SVM is about 20%
of that of the SVM. The third row shows the classification accuracy.
It is clear that for small values of the parameter � , the FCNN-SVM
presents a perceptible loss of accuracy, which, in any case, is within
2%. Interestingly, for greater values of � (e.g., � � ���) the accura-
cies of FCNN-SVM and SVM are comparable.

Fig. 3 shows the results of the experiments on the Forest Cover data
set. For this data set, considerations similar to those drawn for the
DARPA 1998 data set hold. For example, as for the execution time,
by using the linear kernel with � � ��� on the 30% sample, the
FCNN-SVM terminated in about 2700 s, while the SVM required about
111 000 s.

Fig. 4 shows the results of the experiments on the Checkerboard data
set.

While the SVM required about 1350 s, the FCNN-SVM terminated
after about 24 s. The FCNN-SVM in this case is about 60 times faster
than the SVM. Interestingly, on the largest sample, the FCNN-SVM

computed 3012 SVs, while the SVM computed 5474 SVs (55%),
without any loss in test accuracy. Indeed, the FCNN-SVM reached the
100% accuracy, while the SVM stabilized on the 99.95% accuracy.

It is interesting to point out that, as far as the execution time and the
number of SVs are concerned, as the data set size increases, the perfor-
mances of the FCNN-SVM improve with respect to those of the SVM.
Consider the SVM relative execution time (also called speedup of the
FCNN-SVM) that is the ratio �������������� between the execu-
tion time ���� of the SVM and the execution time ��������� of the
FCNN-SVM. We note that, in all the experiments, this ratio increases
with the data set size. As an example, the following table reports some
SVM relative execution times:

�� �� ��� ��� ��� ���

DARPA ���� 	���
 ����� ����� ������ �

Forest ���� ���
 ���	
 	���� � �

Checkerboard ���	 � ����� ����� ����� �����
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Fig. 5. Experiments on synthetic data sets.

For DARPA 1998 and Forest Cover, the parameters considered in the
table above are the linear kernel and � equals 100. From this table, we
expect that the larger the data set, the greater the SVM relative execu-
tion time. We point out that the above behavior is common to all the
other combinations of parameters. Moreover, the FCNN-SVM relative
number of SVs% decreases with the data set size. As an example, the
following table reports the FCNN-SVM relative number of SVs on the
same combination of the parameters above considered:

�� �� ��� ��� ��� ���

DARPA ��� ��� ��� ��� �	� �

Forest 
�� ��� ��� ��� � �

Checkerboard 	�� � 
�� ��� �	� ���

Also in this case, the above behavior is common to all the other com-
binations of parameters.

C. Syntethic Data Sets

Experiments presented in this section are designed to model both
advantageous and critical scenarios for the FCNN-SVM method. We
considered two families, called SynthLin and SynthClust, of synthet-
ically generated data sets. The two families differentiate for the data
class distribution, while the data sets within the same family differen-
tiate for the dimensionality of the feature space.

The structure of the data set is intentionally simple in order to make
immediately intelligible the behavior of the methods. The data sets
of the SynthLin family are composed of 10 000 points uniformly dis-
tributed in the hypercube ��� ���, where � is the dimensionality of the
feature space � � ��� �����. The points are partitioned into two classes
by means of a random generated separating hyperplane (classes are al-
most balanced). Moreover, the labels of 100 randomly selected points
(1% of the data set) are flipped in order to simulate the presence of
noise. Thus, the classes of these data sets are almost linearly separable,
but the points in the data sets “fill” the whole space. The data sets of the
SynthClust family are composed of 100 000 points distributed in four
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well-separated Gaussian clusters in the hypercube ��� ���. The clusters
are partitioned into two classes in a way that makes them not linearly
separable.

Fig. 5 shows the experimental results on the two aforementioned
families. As for the SynthLin data sets, we used the linear kernel and
set the parameter � to 10, since this value guaranteed accuracy close
to 99%. As for the SynthClust data sets (second row of the figure), we
used an RBF kernel with � � �� and set � to 10, since these values
guaranteed accuracy close to 100%.

The SynthLin data set (first column of Fig. 5) represents a scenario
for which the SVM is very appropriate, since classes are almost lin-
early separable. As for the FCNN-SVM, it must be said that on this
kind of data, it does not provide appreciable advantages. Indeed, since
the points are uniformly distributed in the unit hypercube and since the
class boundary is represented by a hyperplane, as the dimensionality
of the space increases, the number of points of one class “facing” the
opposite class increases (note the total number of points is held fixed
with the dimensionality). Since these are the points contributing to form
the FCNN subset, the size of this subset increases as well. As a conse-
quence, the execution time of the FCNN-SVM is comparable to that of
the SVM. Moreover, the FCNN-SVM slightly reduces the number of
SVs.

The SynthClust data set (second column of Fig. 5) represents a
common scenario in real-life data, where multidimensional objects
are clustered in homogeneous subpopulations. It represents a scenario
in which using the FCNN-SVM is very profitable. In fact, it can be
observed that in this case the SVM relative execution time worsens as
the dimensionality increases, and that the number of SVs selected by
the SVM is far greater than that selected by the FCNN-SVM. This can
be explained, since the FCNN-SVM works only on the reduced subset
selected by the FCNN.

Summarizing, experiments presented in this section serve the
purpose of discussing two prototypical scenarios in which using
the FCNN-SVM either does not pay much or is very profitable. In
general, we can say that the FCNN-SVM does not exhibit large time
improvements over the SVM when the number of points contributing
to form the FCNN decision boundary is comparable to the size of the
training set. This situation could happen, but it is not the standard. In
fact, multidimensional real-life data sets are often clustered or even
present low intrinsic dimensionality.

Finally, the above experiments show also the scalability behavior
of the method with respect to the data dimensionality (while those
reported in the preceding section concern scalability with respect to
the data set size). Clearly, the absolute execution time should increase
with the dimensionality, due to the major cost to compute the dis-
tance function. Nonetheless, this does not mean that the speedup of
the FCNN-SVM has to worsen. As a matter of fact, for one of the two
families shown above (SynthClust), the speedup is increasing.

IV. CONCLUSION

In this brief, we introduced the FCNN-SVM classifier, which greatly
reduces the training time and the number of SVs with only a little loss
of accuracy with respect to the standard SVM.
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