
COPYRIGHT NOTICE

c© 2011 IEEE. Personal use of this material is permitted. Permis-
sion from IEEE must be obtained for all other uses, in any current
or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any copy-
righted component of this work in other works.

This is the author’s version of the work. The definitive version was
published in IEEE Transactions on Knowledge and Data Engineer-

ing (TKDE), 2011.

DOI: http://dx.doi.org/10.1109/TKDE.2011.93.

i

http://dx.doi.org/10.1109/TKDE.2011.93

1

Indexing Uncertain Data
in General Metric Spaces

Fabrizio Angiulli and Fabio Fassetti

Abstract —In this work we deal with the problem of efficiently answering range queries over uncertain objects in a general metric space.
In this study, an uncertain object is an object that always exists but its actual value is uncertain and modeled by a multivariate probability
density function. As a major contribution, this is the first work providing an effective technique for indexing uncertain objects coming
from general metric spaces. We generalize the reverse triangle inequality to the probabilistic setting in order to exploit it as a discard
condition. Then, we introduce a novel pivot-based indexing technique, called UP–index, and show how it can be employed to speed up
range query computation. Importantly, the candidate selection phase of our technique is able to noticeably reduce the set of candidates
with little time requirements. Finally, we provide a criterion to measure the quality of a set of pivots and study the problem of selecting a
good set of pivots according to the introduced criterion. We report some intractability results and then design an approximate algorithm
with statistical guarantees for selecting pivots. Experimental results validate the effectiveness of the proposed approach and reveal that
the introduced technique may be even preferable to indexing techniques specifically designed for the Euclidean space.

Index Terms —Indexing, Metric spaces, Uncertain data

✦

1 INTRODUCTION

IN this work we deal with the problem of efficiently
answering range queries over uncertain objects. In this

study, an uncertain object is an object that always exists
but its actual value is uncertain and modeled by a
multivariate probability density function [1], [2], [3], [4],
[5], [6], [7].
In past years, many efforts for providing efficient

algorithms for similarity search in metric spaces have been
made, due to the variety of fields where this kind of
operation is useful [8], [9], [10]. These algorithms search
for objects in a given data collection which are similar,
or close, to an input object, also called query object. In
particular, range queries, which are of interest here, take as
input the query object q and a radiusR, and return all the
objects of the collection lying within distance R from q.
Most of the similarity search approaches proposed in the
literature rely on the strategy of building an index, that is
a data structure aimed to reduce the number of distance
computations at query time. Basically, these algorithms
distinguish between indexing time and query time. Loosely
speaking, at indexing time, the given collection of objects
is partitioned into a set of equivalence classes. At query
time, some criteria are exploited in order to discard as
many irrelevant classes as possible, while the objects
of the non-discarded classes are exhaustively compared
with the query object.
As far as the uncertain setting is concerned, to perform

a range query a further parameter is required, that is
a probability threshold τ . Thus, generally, the query
retrieves all the uncertain objects that lie within a given
region with probability at least τ [1], [4], [6].

F. Angiulli and F. Fassetti are with DEIS, University of Calabria, Via P. Bucci
41C, 87036 Rende (CS), Italy, email: {f.angiulli, f.fassetti}@deis.unical.it

Uncertainty arises in real data in many ways, re-
sulting from the limitations of the equipment, repeated
measurements, continuously changing data values, or
in other ways. Despite a lot of applications deal with
data modeled as elements of the Euclidean space or,
in more general, of a vector space, there are also rel-
evant applications involving data coming from non-
vector spaces which are indeed metric ones. Examples
of notable metrics involving non-vector data are the
Edit distance [11] defined over strings and the distances
induced by graph structures.
As an example, consider a graph modelling a cel-

lular network, where graph nodes represents cellular
antennas (and their associated cells) and edges represent
wired connections between cells. In such a scenario,
mobile wireless devices can be represented by means
of uncertain objects having associated the probability
to stay at a particular node. The distance between two
devices is then given by the number of links composing
the smallest path joining the cells they belong to, also
said number of hops. This distance is a metric, but the
involved space is not a vector one. A further example,
concerning uncertain strings, is provided later in the
paper.
The problem of searching over uncertain data was

first introduced in [1] where the authors considered
the problem of querying one-dimensional real-valued
uniform pdfs. [12] introduced the probabilistic similarity
join operator and took into account the problem of its
computation when each uncertain object is represented
by a finite set of sample points. In order to improve effi-
ciency of the UK-means algorithm [13], that is a cluster-
ing algorithm based on the expected distance (ED) [14]
from uncertain objects, in [15] various pruning methods
to avoid the expensive ED calculation are introduced.

2

Since ED is a metric, the triangle inequality, involving
some pre-computed expected distances between a set of
anchor objects and the uncertain data set objects, can be
straightforwardly employed in order to prune unfruitful
distance computations. [16] considered the problem of
indexing categorical uncertain data. Specifically, they
presented an extension of the usual equality operator
for uncertain data that can be used to define operations
such as joins over uncertain attributes. Moreover, they
proposed two index structures for uncertain categorical
data, the first based on R-trees and the second based
on an inverted index structure, to support probabilistic
equality queries. To answer uncertain queries [4] intro-
duced the concept of probabilistic constrained rectan-
gles (PCR) of an object o, which, loosely speaking, are
families of m-dimensional rectangles surrounding the
region which the object o is most likely to belong to,
and presented some pruning rules based on the use
of these PCRs. Intuitively, PCRs can be considered a
generalization of the concept of MBR and are stored in
an index data structure, called U-tree, which shares a
common rationale with the R-tree. In [17] it is pointed
out that the U-tree does not always provide a good
support to range queries with non-rectangular regions
or rectangular regions not aligning to axes. Motivated
by these facts, the UI-tree, an R-tree-like inverted index
structure which is based on the partitions of uncertain
objects, is introduced. [6] considered the problem of in-
dexing uncertain objects in Rwhose pdfs can be modeled
as histograms, providing various indexing schemes with
linear and near-linear space and logarithmic time.
In many applications the metric space is indeed a

vector space. A vector space allows to use geometric
and coordinate information which is unavailable in gen-
eral metric spaces. Among the similarity search method
proposed in the literature there are k-d-trees [18], R∗-
trees [19], and X-trees [20], and many others. Moreover,
since these techniques make extensive use of coordinate
information to group and classify points, they have an
exponential dependency on the number of dimensions.
One of the main techniques to overcome the curse

of dimensionality, and which is employed for indexing
objects from a general metric space, is the pivoting based
one [21], [22], [23], [8], [24], [10], [25]. At indexing time, a
pivot based algorithm selects a certain number of objects,
called pivots, and stores in the index all the pairwise
distances among objects of the collection and pivots.
Due to the reverse triangle inequality, given two generic
objects x and y, their distance d(x, y) cannot be smaller
than Dp(x, y) = |d(x, p)− d(p, y)|, for any other object p.
Hence, the value Dp(x, y) is a lower bound for d(x, y).
With a set of k pivots P = {p1, . . . , pk}, a better lower
bound DP(x, y) to the distance d(x, y) can be obtained
as max1≤i≤k Dpi

(x, y). Note that the value of DP(x, y) is
computed by exploiting only the pre-calculated distances
among the objects x and y and all the pivots, and without
the need of computing the distance between x and y.
At query time, first of all, the distances between the

query object q and all the pivots are computed. Then,
the set of candidate objects belonging to the actual query
outcome are obtained by selecting only the objects x such
that DP(q, x) ≤ R. Unfortunately, by using this strategy
some spurious objects may be captured, namely objects
x such that DP(q, x) ≤ R but d(q, x) > R. Hence, the true
neighbors of q are eventually retrieved by a filtering phase
consisting in computing the actual distances among q
and each candidate object. Ideally, the set of candidate
objects should coincide with the outcome of the query.
However, minimizing the number of the spurious objects
is a hard challenge. Usually, the greater the number of
pivots, the smaller the number of spurious objects in the
candidate set [24], [25], [26].
Given a set of uncertain objects DS, an uncertain range

query of center q, radius R, and probability threshold τ ,
retrieves all the uncertain objects of DS that lie within
distance R from q with probability at least τ , that are
the objects x of DS such that Pr(d(x, y) ≤ R) ≥ τ holds.
In the setting considered here the center q of the query
may be either a certain or an uncertain object.
As a major contribution, to the best of our knowledge

this is the first work providing an effective technique
for indexing uncertain objects coming from general metric
spaces, while previously introduced techniques are ap-
plicable only to objects coming from a vector space.
In particular, we introduce a novel indexing technique,
called UP–index, which makes use of pivots in order
to index uncertain data. Next, we summarize the other
contributions of the work:

• we generalize the reverse triangle inequality to the
probabilistic setting in order to exploit it as a discard
condition, that is to establish if Pr(d(x, y) ≤ R) < τ ,
without the need of computing the actual value of
the probability Pr(d(x, y) ≤ R);

• we introduce UP–index and show how it can be
employed to speed up range query computation on
uncertain data. Importantly, the candidate selection
phase of our technique is able to noticeably reduce
the set of candidates with little time requirements. In
particular, to compute the probability Pr(d(x, q) ≤
R), and hence to decide if x belongs to the answer
of the query, a (2m)-dimensional integral has to be
evaluated. In contrast, our discard condition costs
only O(h) elementary operations, for h a fixed small
value, and hence it is independent of the data
dimensionality. This means that our filtering phase
permits to save a vast amount of time;

• we conduct extensive experiments to validate the
proposed approach. In particular, we analyzed scal-
ability with respect to data set size and dimen-
sionality, performances on real scattered data with
respect to the degree of uncertainty associated with
data, and the behavior on non vector spaces, specif-
ically on a string domain. The experiments pointed
out that our method is able to greatly reduce
the number of candidate objects and to signifi-
cantly improve time performances, and that the

3

technique exhibits effectiveness also on the string
domain. Moreover, we compared the UP-index with
indexing techniques specifically designed to per-
form range queries on uncertain objects in the
multi-dimensional Euclidean space. The UP-index
revealed itself as more efficient and effective than
competitors and also to be preferable when the
dimensionality of the space increases;

• we provide a criterion to measure the quality of a set
of pivots and study the problem of selecting a good
set of pivots, reporting some intractability results.
Specifically, we prove that selecting a set of pivots
that minimizes the expected error in a general metric
space is NP-hard, and, moreover, we generalize the
result to the Euclidean space. We note that this result
is still valid for certain data, for which the study of
the complexity of the problem of selecting a good
set of pivots has been neglected in the literature.
Also, we introduce an estimation algorithm with
statistical guarantees for selecting a good quality
set of pivots and, then, experimentally show that
the introduced criterion is effective in enhancing the
performances of UP–index.

Summarizing, this work establishes the foundations for
dealing with general metric spaces in the uncertain
scenario and, under this perspective, we believe it opens
other interesting research directions.

The rest of the work is organized as follows. In Sec-
tion 2 the notion of distance between uncertain objects
is introduced and some of its properties are studied.
Section 3 details UP–index building and uncertain range
query answering. Section 4 reports experimental results.
Section 5 considers the problem of selecting an optimal
set of pivots. Finally, Section 6 draws conclusions of the
work.

2 UNCERTAIN DISTANCE

In this section, we deal with the distance between un-
certain objects. We start by providing some preliminary
definitions.

An attribute (or dimension) a is an identifier with an
associated domain denoted as D(a). Given a set of
attributes A = {a1, . . . , am}, D(A) denotes the domain
associated with A, namely the set D(a1) × · · · × D(am).
Whenever the set of attributes is clear by the context the
domain associated with A is denoted as D.

A certain object (or value) v on A is an m-ple
〈v1, . . . , vm〉, where vi ∈ D(ai). An uncertain object p
on A is a random variable having domain D(A) with
associated probability density function (pdf for short)
fp, where fp(v1, . . . , vm) denotes the density for p in
〈v1, . . . , vm〉, and cumulative distribution function (cdf
for short) F p. An uncertain data set DS on the domain
D is a set of uncertain objects on D.

In the following, we assume that D is a metric space,
namely a space equipped with a distance function d :

D × D 7→ R satisfying the following properties: non-
negativity, symmetry, reflexivity, and triangle inequality.
Given an object v of D, BR

v denotes the set of values
{w ∈ D | d(w, v) ≤ R}, namely the hyperball having
center v and radius R, while SR

v denotes the set of values
{w ∈ D | d(w, v) = R}, namely the hypershpere having
center v and radius R.
Given two uncertain objects p and q, a non negative

real number R, and a probability threshold τ , if it holds

Pr(d(p, q) ≤ R) ≥ τ

then the objects p and q are at distance not greater than
R with probability at least τ . Next, we show how the
probability Pr(d(p, q) ≤ R) can be computed.
Definition 2.1: Given two uncertain objects p and q,

we denote by ∆p,q the continuous random variable
representing the distance between p and q. In particular,
for R ≥ 0, the probability density function of ∆p,q is:

fp,q
∆ (R) =

∫

D

∫

SR
v

fp(v)f q(w) dw dv, (1)

which corresponds to the probability that the distance
between p and q is R; while, for R < 0, fp,q

∆ (R) evaluates
to zero. Conversely, for R ≥ 0, the cumulative distribu-
tion function is:

F p,q
∆ (R) =

∫

D

∫

BR
v

fp(v)f q(w) dw dv, (2)

which corresponds to the probability that the distance
between p and q is lower than or equal to R; while, for
R < 0, F p,q

∆ (R) evaluates to zero.
By definition of F p,q

∆ , it holds that

Pr(d(p, q) ≤ R) ≥ τ ⇐⇒ F p,q
∆ (R) ≥ τ.

Definition 2.1 is given for two uncertain objects p and
q. If q is a certain object then Equation (1) reduces to

fp,q
∆ (R) =

∫

SR
q

fp(v) dv, (3)

and Equation (2) reduces to

F p,q
∆ (R) =

∫

BR
q

fp(v) dv. (4)

We note that the integrals in Equations (1) and (2) are
(2m)-dimensional, while the integrals in Equations (3)
and (4) are m-dimensional.
Next, we generalize the reverse triangle inequality to the

introduced uncertain context.
Theorem 2.1 (Uncertain Reverse Triangle Inequality): For

uncertain objects x, y and z, if Pr(|d(x, z) − d(z, y)| ≤
R) < τ then Pr(d(x, y) ≤ R) < τ , for any R and τ .

Proof: In order to prove the theorem, it is enough to
prove that for each R and for each x, y, z:

Pr(d(x, y) ≤ R) ≤ Pr(|d(x, z) − d(z, y)| ≤ R).

Consider the second term of the inequality. It corre-
sponds to the probability that x assumes value u ∈ D, y
assumes value v ∈ D, and z assumes value w ∈ A, where

4

A is the locus of objects w such that |d(u,w)− d(w, v)| ≤
R. Namely:

Pr(|d(x, y)− d(y, z)| ≤ R) =

∫

D

∫

D

∫

A

f
x(u)fy(v)fz(w) dw dv du.

The domain D of v can be split in two components ac-
cording to the value assumed by u. The first component
concerns v ranging in the hyperball having center u and
radius R, namely BR

u ; whereas, the second component
concerns v ranging outside the hyperball having center
u and radius R, denoted as BR

u . Then,

Pr(|d(x, y)−d(y, z)| ≤ R) =

∫

D

fx(u)

∫

BR
u

fy(v)

∫

A

fz(w) dw dv du+

+

∫

D

fx(u)

∫

BR
u

fy(v)

∫

A

fz(w) dw dv du.

Consider, now, the first term of the sum. If v lies in
the hyperball BR

u , the distance between v and u is not
greater than R. Since d is a metric, |d(u,w) − d(w, v)| ≤
d(u, v) ≤ R for each w, then A in this case corresponds
to D. As a consequence,

∫
A
fz(w) dw is the probability

for z to belong to the whole domain and then it is equal
to 1. Therefore, the previous Equation can be rewritten
as:

Pr(|d(x, y)− d(y, z)| ≤ R) =

∫

D

fx(u)

∫

BR
u

fy(v) dv du+

+

∫

D

fx(u)

∫

BR
u

fy(v)

∫

A

fz(w) dw dv du.

Since, by Equation (2):

Pr(d(x, y) ≤ R) =

∫

D

∫

BR
u

fx(u)fy(v) du dv,

it holds that

Pr(|d(x, z) − d(z, y)| ≤ R) =

Pr(d(x, y) ≤ R)+

∫

D

fx(u)

∫

BR
u

fy(v)

∫

A

fz(w) du dv dw.

Being the second term a probability, it is always non
negative and, then, this concludes the proof.

3 INDEXING UNCERTAIN DATA

In this section, we introduce our discard condition (Sec-
tion 3.1), detail the implementation of the UP–index
(Section 3.2), analyze the temporal cost of building it and
its space occupancy (Section 3.3), and the temporal cost
of answering a range query (Section 3.4).

3.1 Range Queries and Discard Condition

Definition 3.1 (Uncertain Range Query): Given an un-
certain data set DS, an uncertain object q called the query
object, a distance value R, and a probability threshold τ ,
the range query with center q and radius R retrieves all the
objects x in DS such that Pr(d(x, q) ≤ R) ≥ τ .
In order to efficiently answer uncertain range queries

in general metric spaces, we generalize the pivot based
approach to the case of uncertain data. In particular, we

exploit a set of certain objects (the pivots) in order to
single out uncertain objects x in DS that do not belong
to the answer of the uncertain range query without
explicitly computing Pr(d(x, q) ≤ R).
Let p be a certain object, let x and q be two uncertain

objects, and let

Dp(x, q) = |d(x, p)− d(p, q)|.

If Pr(Dp(x, q) ≤ R) < τ , then due to Theorem 2.1, it
is known that the probability Pr(d(x, q) ≤ R) is lower
than τ , without the need of computing the actual value
of Pr(d(x, q) ≤ R).
Thus, the property stated in Theorem 2.1 can be ex-

ploited to discard objects. The condition

Pr(Dp(x, q) ≤ R) < τ,

is referred to as discard condition and is used to filter out
data set objects.
Specifically, given a set P = {p1, . . . , pk} of k certain

objects, the pivots, the candidate objects are selected as the
objects x of the data set such that

∀p ∈ P , P r(Dp(x, q) ≤ R) ≥ τ.

Before detailing the implementation of the uncertain
pivot based index, we show how the probability
Pr(Dp(x, q) ≤ R) can be formulated in terms of the pdfs
and the cdfs of x and q.
Theorem 3.1: The probability Pr(Dp(x, q) ≤ R) can be

computed as
∫ ∞

0

(F x,p
∆ (r +R)− F x,p

∆ (r −R)) · f q,p
∆ (r) dr. (5)

Proof: We note that

Pr(Dp(x, q) ≤ R) = Pr
(
|d(x, p)− d(q, p)| ≤ R

)
=

=

∫
∞

0

Pr
(
|d(x, p)− r| ≤ R

)
· Pr

(
d(q, p) = r

)
dr =

=

∫ ∞

0

Pr
(
r − R ≤ d(x, p) ≤ r +R

)
· Pr

(
d(q, p) = r

)
dr =

=

∫
∞

0

(
Pr
(
d(x, p) ≤ r + R

)
− Pr

(
d(x, p) ≤ r − R

))
·

· Pr
(
d(q, p) = r

)
dr.

Since Pr
(
d(q, p) = r

)
= f q,p

∆ (r) and Pr
(
d(x, p) ≤ r

)
=

F x,p
∆ (r), the result follows.

Note that if q is a certain object, then the above integral
reduces to the difference:

F x,p
∆ (d(q, p) +R)− F x,p

∆ (d(q, p)−R). (6)

3.2 Building the UP–index

Let P be the set of pivots. In order to check the discard
condition, the integral reported in Equation (5) has to be
computed.
We note that the function F x,p

∆ depends only on the
data set object x and the pivot p, and does not depend on
the query object q. Thus, if we pre-compute the function
F x,p
∆ , then the discard condition check can be accelerated.

Indeed, the term (F x,p
∆ (r + R) − F x,p

∆ (r − R)) can be

5

obtained by using the pre-computed function F x,p
∆ , while

it remains to evaluate the function f q,p
∆ , which depends

only on the pivot p and the query object q. Since the
function f q,p

∆ does not depend on the data set objects,
once the range query with center q is submitted, for each
pivot p the function f q,p

∆ can be pre-computed, and then
used to check all the discard conditions.
Clearly enough, since both F x,p

∆ and f q,p
∆ are real

functions, in general it is not possible to pre-compute
and store all the values they assume. However, we note
that, since we have to verify that Pr(Dp(x, q) ≤ R) < τ ,

if we knew an upper bound F̂ x,p
∆ (r) for F x,p

∆ (r) and

an upper bound f̂x,p
∆ (r) for f q,p

∆ (r), then the discard
condition could be still correctly applied.
Thus, the idea is to provide for any uncertain object y a

function Gy,p which is easy to store and to be employed
for computing both an upper bound of fy,p

∆ and an upper
bound of F y,p

∆ .
In particular, we first compute the histogram gy,p,

consisting of h slots, of the function fy,p
∆ , where h is a

fixed parameter. In order for gy,p to represent an upper
bound to the function fy,p

∆ , in each slot the maximum
value assumed by fy,p in the interval associated with
the slot is stored. Then, the function Gy,p is obtained as
the cumulative histogram of the function gy,p.
Next, we detail the building of the function Gy,p and

then show how to use it in order to compute an upper
bound of both F y,p

∆ (r) and fy,p
∆ (r).

Let p be a pivot and y be an uncertain object. Let rm
and rM denote, respectively, the minimum and maxi-
mum value for the distance between p and y, and let
s = (rM−rm)

h
, where h is the number of histogram slots.

In particular, the values rm and rM can be obtained
from the pdf of y, by considering the region which
y belongs to with non-negligible probability. With this
aim, w.l.o.g. it is assumed that each uncertain object
y is associated with a finite region SUP(y), containing
the support of y, namely the region such that Pr(y 6∈
SUP(y)) = 0 holds. For example, SUP(y) could be
defined as an hyper-ball or an hyper-rectangle.
If the support of y is infinite, then SUP(y) is such

that Pr(y 6∈ SUP(y)) ≤ π, for a fixed small value π,
and the probability for y to exist outside SUP(y) is
considered negligible. In this case the error ε involved in
the calculation of the probability Pr(d(x, y) ≤ R), with
x and y two uncertain objects, is the square of π.
For example, assume that the data set objects y are

normally distributed with mean µy and standard de-
viation σy . If the region SUP(y) is defined as [µy −
4σy, µy + 4σy] then the probability π = Pr(y 6∈ SUP(y))
is π = 2 · Φ(−4) ≈ 0.00006 and the maximum error is
ε = π2 ≈ 4 · 10−9.
Figure 1 reports an example of fy,p

∆ function (dotted
line). We considered objects in R; the object p is 0 and the
uncertain object x is distributed according to a normal
distribution with µ = 4 and σ = 1, over the interval
[0, 8]. Thus, rm = 0, rM = 8. The dashed line shows the
function gy,p with h = 8 slots and, hence, s = 1.

0 2 4 6 8
0

0.5

1

1.5

f∆
y,p

gy,p

Gy,p

Fig. 1: fy,p
∆ and its upper bound

The value gy,p in the generic slot i (1 ≤ i ≤ h) is
obtained as gy,p(i) = maxr∈Ii

fy,p
∆ (r) where Ii denotes

the interval (rm + s · (i− 1), rm + s · i]. 1

Then, the histogram Gy,p is built by associating with
each slot i (1 ≤ i ≤ h) the value

Gy,p(i) =
i∑

j=1

gy,p(j).

In the following, we assume that Gy,p(0) = 0. The values
of Gy,p for the example function are reported in Figure
1 with a solid line.

An upper bound f̂y,p
∆ (r) of fy,p

∆ (r) is then obtained as:

f̂y,p
∆ (r) = Gy,p(i)−Gy,p(i− 1),

where i = ⌈ r−rm
s

⌉ (with r ∈ (rm, RM]) is the slot such

that r ∈ Ii, while an upper bound F̂ y,p
∆ (r) of F y,p

∆ (r) is
given by:

F̂
y,p

∆ (r) = s·Gy,p(i−1)+(Gy,p(i)−G
y,p(i−1))·(r−(rm+s·(i−1))).

Before concluding, we note that the cost to compute

both f̂y,p
∆ and F̂ y,p

∆ by means of Gy,p is O(1).

Hence, an upper bound to the probability
Pr(Dp(x, q) ≤ R) of Equation (5) can be obtained
by computing the following integral:

∫ ∞

0

(F̂ x,p
∆ (r +R)− F̂ x,p

∆ (r −R)) · f̂ q,p
∆ (r) dr. (7)

Moreover, the following property holds.

Proposition 3.2: The exact value of Equation (7) can be
computed by performing O(h) operations.

Proof: We exploit the fact that functions F̂ x,p
∆ and

f̂ q,p
∆ are stored in the histograms Gx,p and Gq,p of h slots
each. Let rqm and rqM (rxm and rxM , resp.) be the minimum
and the maximum value of the distance between p and

q (p and x, resp.), and let sq =
r
q

M
−rqm
h

and sx =
rxM−rxm

h
.

1. Assume that the interval I1 includes also the left endpoint rm.

6

We can write:

∫ r
q
M

r
q
m

(F̂x,p
∆

(r + R)− F̂
x,p
∆

(r − R)) · f̂q,p
∆

(r) dr =

=
h∑

i=1

(Gq,p(i)−Gq,p(i− 1))

∫ ri

ri−1

(F̂x,p
∆

(r + R) − F̂
x,p
∆

(r − R)) dr =

=
h∑

i=1

(Gq,p(i)−Gq,p(i− 1))·

·
(∫ ri

ri−1

F̂
x,p
∆

(r + R) dr −
∫ ri

ri−1

F̂
x,p
∆

(r − R) dr

)

.

where ri is rqm + sq · i.
If we knew the primitive Fx,p of the function F̂ x,p,

then we could compute the integral
∫ b

a

F̂ x,p(r) dr

as Fx,p(b) − Fx,p(a). Thus, let Hx,p be the cumulated
histogram associated with F̂ x,p, namely

Hx,p(i) = sx
i∑

j=1

Gx,p(j), (1 ≤ i ≤ h),

which can be computed in O(h) time. Then, the function
Hx,p can be defined as

Fx,p(r) = s
x·Hx,p(i−1)+(Hx,p(i)−H

x,p(i−1))·(r−(rxm+s
x·(i−1)))

and can be computed in O(1) time.
We can finally express Equation (7) as the following

summation

h∑

i=1

(Gq,p(i) −Gq,p(i− 1)) · (Fx,p(ri + R) −Fx,p(ri−1 +R)+

−Fx,p(ri − R) + Fx,p(ri−1 −R)) ,

composed of h terms, which can be computed by per-
forming O(h) operations.

3.3 Cost of building the UP–index

In this section, we analyze the spatial and the temporal
cost of building the UP–index. Let P be the set of pivots,
let h be the number of histogram slots and let m be the
number of dimensions of the domain D.
As for the space occupancy, the UP–index stores the

data set DS, the set of pivots P , and, for each pair x ∈
DS and p ∈ P of objects, the cumulative histogram Hx,p.
Each cumulative histogram can be encoded by means of
h+2 real numbers, that are the two endpoints rm and rM ,
and the values of the histogram in the h slots considered.
Overall, to store all the cumulative histograms, |DS|·|P|·
(h+ 2) floating point numbers are needed.
As far as the temporal cost is concerned, first of all, the

cost to evaluate the integral of a multivariate function
has to be provided. For a generic function f of m
variables, it is known from the information based complex-
ity theory [27] that computing a m-dimensional integral
has, in the worst case setting, a cost that exponentially
depends on the number of variables m. In particular
such a cost is O(ε−m), where ε is the maximum error

admitted in computing the integral. Nevertheless, when
the function f satisfies some properties the curse of
dimensionality in the average case setting can be broken
[27]. In the following we refer to the cost of computing
a m-dimensional integral as Cint(m).
In order to build the UP–index, for each uncertain

object x in DS and for each pivot p, the histogram Gx,p

has to be computed. Each histogram can be computed
with only one single multidimensional integration by
exploiting the following strategy. In order to compute a
numerical approximation of the function F x,p

∆ it is possi-
ble to proceed to the integration of the function fx(r) on
the whole domain of x. This corresponds to partitioning
the region R occupied by the pdf fx in a set R1, . . . ,RN

of (sub-)regions, and then computing the integral value
as the summation

∑
i si, where si denotes the volume of

the region Ri. During the above integration, the terms si
pertaining to regions Ri located at distance not greater
than r from p are then accumulated to obtain the value
F x,p
∆ (r). The function fx,p

∆ can eventually be obtained
by exploiting F x,p

∆ . Importantly, the above strategy is
independent of the numerical integration method used
to calculate integrals.
This leads to the following overall cost for building

the index:
O
(
|DS| · |P| · Cint(m)

)
,

which does not depend on the resolution h of the
histogram.
Finally, we point out that the cost of inserting a novel

uncertain object x into the UP–index corresponds to the
cost of computing the histogram Gx,p for each p ∈ P , and
then it is O(|P|·Cint(m)). Conversely, the cost of removing
an uncertain object x from the UP–index corresponds to
the cost of removing the |P| histograms Gx,p associated
with x, and then it is O(1).
Moreover, the cost of adding a pivot p to the UP–index

is O(|DS| · Cint(m)), since it amounts to computing the
histogram Gx,p for each x ∈ DS. Vice versa, the cost of
deleting a pivot is O(1), since it amounts to removing the
|DS| histograms Gx,p associated with p.

3.4 Answering a range query

Assume that the UP–index has been built. A range query
with center q and radius R is answered by performing
the following steps:

1) (Initialization) First, for each pivot p in P , the func-
tion Gq,p is computed;

2) (Candidate selection phase) Then, the candidate ob-
jects are selected by evaluating the discard condi-
tion. In particular, for each uncertain data set object
x, it is checked if the discard condition holds for
some pivot p. If it is not the case, x is a candidate
object;

3) (Filtering phase) Finally, for each candidate object x,
it is checked whether Pr(d(x, q) ≤ R) < τ holds
or not. The query answer consists of the candidate
objects x satisfying Pr(d(x, q) ≤ R) ≥ τ .

7

The cost to answer a range query is given by: (1) the cost
to compute Gq,p for each pivot p, (2) the cost to evaluate
Pr(Dp(x, q) ≤ R) for each object x, and (3) the cost to
evaluate Pr(d(x, q) ≤ R) for the candidate objects.
The cost of computing Gq,p for each p ∈ P is O(|P| ·

Cint(m)), as shown in the previous section.
In order to check the discard condition, the upper

bound of the integral (5) reported in Equation (7) has to
be determined. As stated in Proposition 3.2, this value
can be computed in O(h) time.
As for the cost of computing Pr(d(x, q) ≤ R), it fol-

lows from the discussion in Section 2 that it corresponds
to the cost of evaluating a (2m)-dimensional integral,
namely Cint(2m).
Thus, let cands denote the cardinality of the set of

candidates, the cost of answering a range query is then:

O
(
|P| · Cint(m)︸ ︷︷ ︸

Initialization

+ |P| · |DS| · h︸ ︷︷ ︸
Candidate selection phase

+ cands · Cint(2m)︸ ︷︷ ︸
Filtering phase

)
.

Clearly, due to the exponential dependence with m of
Cint in the worst case, the most expensive term of the
cost is the last one, that is cands ·Cint(2m). We note that
the first two terms correspond to the cost of selecting
the set of candidates. This cost is negligible with respect
to the cost of the filtering phase. Hence, the candidate
selection phase permits to select the (usually small) set
of candidates with vast time savings. Compare the above
cost, with the cost of the naive brute-force approach to
answer a range query, that is O(|DS| · Cint(2m)).
To conclude, consider a certain query object q. In this

case the cost of answering a range query reduces to

O
(
|P| · Cdist︸ ︷︷ ︸
Initialization

+ |P| · |DS|︸ ︷︷ ︸
Candidate selection phase

+ cands · Cint(m)︸ ︷︷ ︸
Filtering phase

)
,

where Cdist denotes the cost of computing the distance
between two certain objects. Indeed, note that evaluating
the integral in Equation (7) for q a certain object reduces
to compute the difference between the two real values
reported in Equation (6).

4 EXPERIMENTS

In this section we present results obtained by experi-
menting the UP–index. The various experiments con-
ducted and their goals are detailed in the following.
Given a query object q and a generic data set object

x, if the minimum distance between q and x is greater
than R, then x does not belong to the answer of the
range query centered in q, and x is called a far object,
otherwise x is called a near object. We denote by nnear

the number of data set objects which are near.
In order to quantify the savings obtained by using

UP–index, we make use of two measures, called Gain
and Time gain, which are detailed next.
The Gain measure is defined as

Gain = 1− cands− neighs

nnear − neighs
,

where cands denotes the size of the set of candidates,
that are the uncertain objects which have not been
discarded by the candidate selection phase, and neighs
denotes the size of the solution set, that is the answer
of the range query. Intuitively, if the set of candidates
selected by using UP–index coincided with the true
outcome of the query, then the Gain would be maxi-
mum, that is equal to 1. Differently, the term cands−neighs

nnear−neighs

represents the (relative w.r.t. the number of objects which
are located near the query) number of distances that are
required to be computed during the filtering phase in
order to discard the candidates that do not belong to
the answer of the query.
The Time gain measure is defined as

Time gain = 1− tpivots − tneighs
tnear − tneighs

,

where tpivots denotes the time employed by UP–index to
answer the range query, tnear denotes the time employed
to compute the uncertain distances between the query
object and the nnear non-far objects, and tneighs is the
time needed to compute the uncertain distances between
the query object and the neighs objects.
The difference between the gain and the time gain is

that the latter measure depends on the implementation,
and, particularly, on the number of pdf evaluations em-
ployed during integral computations, while the former
measure depends only on the number of dominating op-
erations to be performed, that are the multi-dimensional
integral computations.
In the experiments we exploited the Montecarlo in-

tegration method [28], [29].2 The resolution h of the
histograms was set to 100. The parameter τ was set
to 0.75. Moreover, pivots were selected by picking at
random some data set objects x and then taking the mean
value x of each of them. Curves shown are then obtained
by averaging results on ten runs.
In order to test the method, for each data set con-

sidered, one thousands uncertain objects were randomly
generated as query objects according to the law used to
generate the other data set objects. Since query objects
are uncertain, (2m)-dimensional integrals have to be
evaluated in order to compute distance probabilities.
The selectivity of a range query is the percentage of

data set objects which belong to the answer of the query,
namely the ratio 100 · neighs

n
, where n is the data set size.

4.1 Scalability with respect to data set size and
dimensionality

Experiments described in this section (see Figure 2) are
designed to study the scalability with respect to the
selectivity and the number of pivots employed and,
moreover, the performances of the method with respect
to the data dimensionality.

2. The number of pdf evaluations to compute m-dimensional inte-
grals was set to 2m+1 · 1,000.

8

10
2

10
3

10
4

10
5

0.95

0.96

0.97

0.98

0.99

1
Synthetic data set

Data set size [n]

G
ai

n

ρ=0.025%
ρ=0.1%
ρ=0.5%

10
2

10
3

10
4

10
5

0.85

0.9

0.95

1
Synthetic data set

Data set size [n]

G
ai

n

|P|=1
|P|=5
|P|=20
|P|=50

5 10 15 20

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Synthetic data set

Number of pivots, |P|

G
ai

n

m=2
m=3
m=5

10
2

10
3

10
4

10
5

0.95

0.96

0.97

0.98

0.99

1
Synthetic data set

Data set size [n]

T
im

e
ga

in

ρ=0.025%
ρ=0.1%
ρ=0.5%

10
2

10
3

10
4

10
5

0.85

0.9

0.95

1
Synthetic data set

Data set size [n]

T
im

e
ga

in

|P|=1
|P|=5
|P|=20
|P|=50

5 10 15 20

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Synthetic data set

Number of pivots, |P|

T
im

e
ga

in

m=2
m=3
m=5

Fig. 2: Experiments on synthetic data sets.

With this aim, we employed the Synthetic data set
family, consisting of m-dimensional uncertain objects in
R

m. Each uncertain object x of the data set has associated
the pdf fx(v1, . . . , vm) = fx

1 (v1) · . . . ·fx
m(vm), where each

fx
i is either a uniform or a normal pdf having mean
µi, with µi randomly selected in the interval [−10,+10],
and support [µi−ri, µi+ri], with ri a randomly selected
number in (0.01, rmax] (for fx

i being a normal pdf, its
standard deviation is equal to ri/4). The value rmax is
such that the maximum volume of the domain associated
with a pdf corresponds to the 1% of the volume of
the domain [−10,+10]m. We considered data sets up to
100,000 objects and to 5 dimensions.

Selectivity. The first column of Figure 2 shows how
the gain and the time gain depend on the selectivity
when the number of pivots |P| is held fixed (specifically
|P| was set to 5). In this experiment the number of
dimensions m was set to two. We varied the parameter
R in a suitable range and measured the corresponding
selectivity ρ. The plot on the first row shows the gain for
ρ equal to 0.025% (upper curve), 0.1% (middle curve),
and 0.5% (lower curve). The smaller the selectivity, the
higher the gain: In all cases the gain is very high,
being greater than 0.98 for ρ = 0.5%, and even better
in the other cases. The plot on the second row shows
the corresponding time gain. The time gain is gener-
ally smaller than the gain, since while the gain takes
into account the multidimensional integral evaluations
needed to compute distance probabilities, the time gain
depends also on the other operations performed by the
UP–index in order to answer the range query. The curves

show that despite the time gain is smaller than the gain,
it anyway remains considerable, practically above 0.97
for ρ = 0.5%. As far as the absolute execution time is
concerned3, the time required by UP-index to answer a
query on the 100,000 sized data set is 1.3 seconds for
ρ = 0.025%, 3.1 seconds for ρ = 0.1%, and 8.2 seconds
for ρ = 0.5%, while the brute force method requires 144.8
seconds for ρ = 0.025%, 170.5 seconds for ρ = 0.1%, and
215.1 seconds for ρ = 0.5%.

Pivots. The second column of Figure 2 shows how the
gain and the time gain depend on the number of pivots
employed when the selectivity is held fixed (specifically,
in this experiment ρ was set to 0.1%). Also in this
experiment the number of dimensions m was set to two.
The plots report the gain and time gain for |P| = 1,
|P| = 5, |P| = 20, and |P| = 50. These plots show that the
greater the number of pivots employed, the higher the
gain. Noticeably, the method performs well also when
only one pivot is employed. For |P| = 1, the gain
(time gain, resp.) is above 0.9 (0.85, resp.). For greater
number of pivots, the gain further improves, being about
0.998 for |P| = 50. As far as the gain is concerned,
performances of the method when the number of pivots
is held fixed appear to be little sensitive to the data set
size. Differently, as for the time gain, there is a trade off
between the number of pivots employed and the size of
the data set. Indeed, for n = 10,000, among the different
values of |P| reported in figure, the best time gain is
attained for |P| = 5, while for n = 100,000, the time

3. Experiments have been performed on a Intel Xeon 2.33GHz based
computer.

9

0 0.5 1 1.5 2 2.5 3
0.5

0.6

0.7

0.8

0.9

1
Ionosphere data set (spread = 0.05)

Selectivity, ρ [%]

G
ai

n

|P|=1
|P|=3
|P|=5

0 0.5 1 1.5 2 2.5 3
0.5

0.6

0.7

0.8

0.9

1
Ionosphere data set (spread = 0.05)

Selectivity, ρ [%]

T
im

e
ga

in

|P|=1
|P|=3
|P|=5

0 0.5 1 1.5 2 2.5 3
0.5

0.6

0.7

0.8

0.9

1
Ionosphere data set (spread = 0.10)

Selectivity, ρ [%]

G
ai

n

|P|=1
|P|=3
|P|=5

0 0.5 1 1.5 2 2.5 3
0.5

0.6

0.7

0.8

0.9

1
Ionosphere data set (spread = 0.10)

Selectivity, ρ [%]

T
im

e
ga

in

|P|=1
|P|=3
|P|=5

0 0.5 1 1.5 2 2.5 3
0.4

0.5

0.6

0.7

0.8

0.9

1
Haberman data set (spread = 0.05)

Selectivity, ρ [%]

G
ai

n

|P|=1
|P|=3
|P|=5

0 0.5 1 1.5 2 2.5 3
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Haberman data set (spread = 0.05)

Selectivity, ρ [%]

T
im

e
ga

in

|P|=1
|P|=3
|P|=5

0 0.5 1 1.5 2 2.5 3
0.4

0.5

0.6

0.7

0.8

0.9

1
Haberman data set (spread = 0.10)

Selectivity, ρ [%]

G
ai

n

|P|=1
|P|=3
|P|=5

0 0.5 1 1.5 2 2.5 3
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Haberman data set (spread = 0.10)

Selectivity, ρ [%]

T
im

e
ga

in

|P|=1
|P|=3
|P|=5

0 0.5 1 1.5 2 2.5 3
0.98

0.985

0.99

0.995

1
Transfusion data set (spread = 0.05)

Selectivity, ρ [%]

G
ai

n

|P|=1
|P|=3
|P|=5

0 0.5 1 1.5 2 2.5 3
0.94

0.95

0.96

0.97

0.98

0.99

1
Transfusion data set (spread = 0.05)

Selectivity, ρ [%]

T
im

e
ga

in

|P|=1
|P|=3
|P|=5

0 0.5 1 1.5 2 2.5 3
0.98

0.985

0.99

0.995

1
Transfusion data set (spread = 0.10)

Selectivity, ρ [%]

G
ai

n

|P|=1
|P|=3
|P|=5

0 0.5 1 1.5 2 2.5 3
0.94

0.95

0.96

0.97

0.98

0.99

1
Transfusion data set (spread = 0.10)

Selectivity, ρ [%]

T
im

e
ga

in

|P|=1
|P|=3
|P|=5

Fig. 3: Sensibility to data uncertainty.

gain performs better for |P| = 20. When |P| = 5 pivots
are employed, the time gain worsens for small data set
sizes (it is about 0.92 for n = 500), but rapidly increases
for larger ones. Moreover, the associated time gain is
expected to surpass the others for million-sized data sets.
Thus, the larger the data set size, the larger the number
of pivots that can be profitably employed to improve
both the gain and the time gain of the method.

Dimensionality. The third column of Figure 2 shows how
the gain and the time gain depend on the number of
pivots employed when the number of dimensions m is
varied. Specifically, in this experiment the data set size
was set to 10,000, the dimensionality m ranges from
2 to 5, and results shown are those corresponding to
selectivity ρ approximatively equal to 1%. The number
|P| of pivots varies from 5 to 20.
The plots confirm that the gain increases with the

number of pivots employed. However, they also high-
light that the greater the data dimensionality the greater
the advantage of having more pivots. The time gain is
informative. Indeed, while for m = 2 the gain increases
a few for |P| ≥ 10, the corresponding time gain is
slightly decreasing, as already observed in the previous
experiment concerning the number of pivots employed.
The time gain worsens since the additional cost paid to
evaluate the discard condition on the augmented set of
pivots is not rewarded by a decrease of the number of
candidates (as just witnessed by the almost stationary

gain).
As for m = 3, the slight increase of the gain is

compensated by the time spent to evaluate the discard
condition on the additional pivots, and, hence, the time
gain tends to stabilize in the interval k ∈ [10, 20]. Finally,
as for m = 5, the gain is always sensibly increasing and,
hence, the time gain is increasing as well up to k = 20.
It is clear from the time gain that in the uncertain

setting the pivots may produce time savings even when
their number exceeds the dimensionality m of the data
domain. We recall that in the literature the temporal cost
associated with pivot based indexes is usually expressed
in terms of number of distances computed in order to
filter out candidate objects that are not neighbors of the
query object. This is a fair assumption only in settings
where distance computations are expensive, which is
actually the setting considered in this paper.
In particular, it must be noted that in the certain

case in order to take advantage of pivots when the m-
dimensional real-valued domain R

m is considered, it
should be guaranteed that each query object q is com-
pared with a number kq of pivots which is smaller than
the actual number of dimensions m. Indeed, compare the
cost of evaluating the discard condition for the certain
object xj :

kq

min
i=1

|d(q, pi)− d(pi, xj)|,

where d(q, pi) and d(pi, xj) are pre-computed real values,

10

with the cost of computing the actual distance between
q and xj : [

m∑

i=1

|qi − xj,i|t
] 1

t

,

where qi and xj,i denote the i-th coordinate value of
q and xj , respectively, and t denotes the Minkowski’s
metric of interest (t > 0).
Interestingly, as pointed out beforehand, the above

limitation does not hold when pivots are employed to
answer range queries on uncertain objects even when
the domain is R

m.

4.2 Sensibility to data uncertainty

The experiments presented in the following are designed
to study the performances of the method on real scat-
tered data with respect to the selectivity and the number
of pivots, and to the degree of uncertainty associated
with data set objects.
The data sets considered are from the UCI ML Repos-

itory [30]: Ionosphere is a two dimensional real-valued
data set composed of 351 objects, which has been ob-
tained by projecting the ionosphere data set on the
two principal components, Haberman is a three dimen-
sional real-valued data set composed of 306 objects, and
Transfusion is a four dimensional real-valued data set
composed of 748 objects.
For each data set above listed, a family of uncertain

data sets has been obtained. Each data set is character-
ized by a parameter, called spread, used to determine the
degree of uncertainty associated with data set objects. In
particular, with each certain object xi = (xi,1, . . . , xi,m)
in the original data set, an uncertain object x′

i having
pdf f i(v1, . . . , vm) = f i

1(v1) · . . . · f i
m(vm) is associated.

Each one dimensional pdf f i
j is randomly set to a normal

or a uniform distribution, with mean xi,j and support
[a, b] depending on the value of the spread. In particular,
let r be a randomly generated number in the interval
[0.01sσj, sσj], where σj denotes the standard deviation
of the data set along the jth coordinate, then a = xi,j−4·r
and b = xi,j + 4 · r.
Figure 3 reports experiments on the data sets Iono-

sphere (first row), Haberman (second row), and Transfusion
(third row). In particular, in order to determine the be-
havior of the method in correspondence of various levels
of uncertainty in the data, we considered two different
values of spread, namely 0.05 and 0.10. Moreover, we
considered selectivities ρ up to about 3% by varying the
radius R in a suitable range.
The curves displayed confirm that both the gain and

the time gain are directly proportional to the selectivity
and to the number of pivots employed. For |P| = 5
and spread 0.10, when the maximum value of selectivity
is considered, the gain is always remarkable, approxi-
mately 0.925 for Ionosphere, 0.850 for Haberman, and 0.997
for Transfusion. Though the larger the number of pivots,
the better the method performances, interestingly, curves

0.4 0.45 0.5 0.55 0.6
0.9

0.92

0.94

0.96

0.98

1
Protein Families Dataset

Radius [R]

G
ai

n

|P| = 1
|P| = 2
|P| = 3

Fig. 4: Experiments on the Protein Families data set.

show that even when only one single pivot is considered
a sensible improvement is achieved.
Moreover, it can be observed that curves for spread

0.10 are above those for spread 0.05, since the (time) gain
increases with data uncertainty. This is due to the fact
that when the uncertainty increases, the number of near
objects increase as well. Thus, the higher the uncertainty,
the larger the number of multi-dimensional integrals in
charge of the brute force algorithm.
Also, noticeably, the method performs better on the

higher dimensional data set here considered, that is
Transfusion. This can be explained by noticing the follow-
ing fact. It is well known that for high dimensional data
the variance associated with pairwise distances tends to
decrease; hence, the number nnear of near objects tends
to increase with the dimensionality. This accounts for the
increased computational effort (number of multidimen-
sional integrals to be evaluated) in charge of the brute
force method. Nonetheless, the very high value of gain
reveals that the UP–index is able to sensibly reduce the
number of objects cands to be considered as candidate
neighbors.
To conclude, it can be observed that the time gain

tends to the gain when the dimensionality increases.
Indeed, the higher the dimensionality, the smaller the
cost of evaluating the discard condition as compared
with the cost of computing the distance probability.

4.3 Behaviour on a non-vector space

The experiment detailed in this section has been de-
signed to test the UP–index on a general (non-vector)
metric space. Specifically, we analyzed the performances
of the method on a uncertain string domain. The metric
employed to measure string similarity is the Edit dis-
tance [11], defined as the minimum number of edits
(i.e. insertions, deletions, or substitutions of a single
character) needed to transform one string into the other.
The experiment was conducted on a data set from

the PFAM database [31], a large collection of families of
protein domains, which are amino acid sequences repre-
senting functional regions of a protein. For each domain

11

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

200

400

600

800

1000

1200

1400

R=250
R=250

R=500

R=500

R=750

R=750

Probability Threshold, τ

California data set
U

se
le

ss
 c

an
di

da
te

s,
 c

an
ds

 −
 n

ei
gh

s

UP−index
U−tree

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

200

400

600

800

1000

R=250
R=250
R=500

R=500
R=750

R=750

Probability Threshold, τ

Long Beach data set

U
se

le
ss

 c
an

di
da

te
s,

 c
an

ds
 −

 n
ei

gh
s

UP−index
U−tree

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

100

200

300

400

500

R=250
R=250

R=500

R=500

R=750

R=750

Probability Threshold, τ

Roads data set

U
se

le
ss

 c
an

di
da

te
s,

 c
an

ds
 −

 n
ei

gh
s

UP−index
U−tree

2 3 4 5
0

100

200

300

400

500

600

700

800

Number of dimensions, m

Synthetic data set

U
se

le
ss

 c
an

di
da

te
s,

 c
an

ds
 −

 n
ei

gh
s

UP−index
U−Tree

2 3 4 5
0

200

400

600

800

1000

1200

1400

1600

Number of dimensions, m

Synthetic data set

T
ot

al
 e

xe
cu

tio
n

tim
e

[s
ec

]

UP−index
U−Tree

2 3 4 5
0

1

2

3

4

5

Number of dimensions, m

Synthetic dat aset

S
el

ec
tio

n
ph

as
e

ex
ec

ut
io

n
tim

e
[s

ec
]

UP−index
U−Tree

Fig. 5: Comparison between the UP-index and the U-tree.

family, the PFAM database stores a set of representative
sequences which contain “don’t care” symbols denoting
unknown or unimportant amino acids.

Specifically, we considered a data set consisting of
about three thousands sequences coming from different
domains. Amino acid symbols in the original sequences
have been replaced by associated nucleotide sequences,
thus obtaining a set of sequences on the alphabet A, C,
G, U, plus the “don’t care” symbol. In order to simulate
uncertain strings, each “don’t care“ symbol has been
modelled as a discrete random variable whose outcomes
are the symbols of the alphabet with probabilities set at
random.

Each query object is generated by randomly selecting
a sequence from the data set and by perturbing it.
We varied the search radius R, which corresponds to
the similarity value according to the normalized Edit
distance, from 0.4 to 0.6 (for larger R, almost all the
objects are to be returned as neighbors), and measured
the gain of the method. We were not able to measure
the time gain since the brute force method was too slow.
Practically, there was an enormous difference between
the execution time of the pivot based index and the brute
force method.

Figure 4 reports the result of the experiment. We
varied the number of pivots from 1 to 3. Three pivots
guaranteed a very high gain in all cases, though also
a smaller number of pivots offered good time savings.
The behavior of the method was very similar to that
observed in previous experiments, thus confirming the
effectiveness of the UP–index in general metric spaces.

4.4 Comparison with the U-tree index

In this section, we compare UP-index with the U-tree
indexing technique [2], [4] which has been specifically
designed to perform range queries on uncertain objects
in the multi-dimensional Euclidean space.4

The uncertain data sets California (62,556 objects), Long
Beach (53,145 objects), and Roads (30,674 objects) have
been obtained from the homonym spatial data sets5 as
described in [2]. In particular, the first two data set have
been already employed in [2] to experiment the U-tree
index. All the data sets consist of Constrained-Gaussian
uncertain objects, that are Gaussian-like distributions
having a finite domain, whose pdf is reported in [2].6

Results are averaged on one hundred uncertain queries.

Figure 5 shows on the first row the number of useless
candidates, that is the difference cands−neighs, selected
on the three above mentioned data sets at the end of
the candidate selection phase by the two methods, for
various values of τ (τ ∈ [0.25, 0.75]) and R (R in {250,
500, 750}). Number of pivots used by UP-index in this
experiment is 5. From the figure it is clear that the UP-
index in more effective than the U-tree, since the number
of useless candidates selected by UP-index is sensibly
smaller.

In order to compare the behavior of the two methods

4. We employed the source code of U-tree available at
http://www.cse.cuhk.edu.hk/∼taoyf/paper/tods07.html.
5. See http://www.census.gov/geo/www/tiger/ and

http://www.rtreeportal.org.
6. The U-tree code available actually supports only this kind of

distributions.

12

when the dimensionality of the space increases, we
considered a family of synthetic data sets similar to
described in Section 4.1, but including only Constrained-
Gaussian uncertain objects. The number of data set
objects has been held fixed to 10,000 and their dimen-
sionality m has been varied from 2 to 5. The radius R
employed is so that the selectivity ρ is approximatively
1.5%, while τ has been set to 0.75. The number of pivots
employed by UP-index has been set to |P| = 10 ·m.
Figure 5 shows on the second row the result of the

experiment. On the left it is reported the number of
useless candidates. Results show that UP-index performs
better also in this experiment. Moreover, the difference
between the number of useless candidates of the two
methods even increases with the dimensionality. The
total execution time is reported on the center. For ho-
mogeneity, the same integration procedure has been
employed by the two methods. As far as the execution
time is concerned, UP-index performs better, due to the
ability of selecting a smaller set of candidates, and the
relative speed of U-tree worsens with dimensionality.
Moreover, the figure on the right, reporting the execution
time of the initialization and candidate selection phases
of the two methods, shows that the UP-index is able to
determine a smaller set of candidates with fewer time
requirements with respect to the U-tree.

5 PIVOT SELECTION PROBLEM

It follows from the cost analysis of Section 3.4 that the
advantages of answering a range query by means of the
UP–index rely on the effectiveness of the discard con-
dition, that is in the size cands of the set of candidates.
Since the cardinality of this set depends on the pivots
used, it makes sense to define a criterion to measure the
quality of the pivots at hand. In this section we provide
a definition suited for the uncertain data setting.
Let P be a set of pivots. It is know from Theorem 2.1

that

∃p ∈ P , P r(Dp(x, y) ≤ R) < τ =⇒ Pr(d(x, y) ≤ R) < τ.

However, if the left side of the implication does not
hold, then we must explicitly compute the probability
Pr(d(x, y) ≤ R). Thus, the best set P∗ of pivots should
satisfy the following desideratum:

∃p ∈ P∗, P r(Dp(x, y) ≤ R) < τ ⇐= Pr(d(x, y) ≤ R) < τ.

Hence, next we define a criterion to evaluate the quality
of a set of pivots whose underlying rationale is to
measure the error committed when d(x, y) is replaced
with Dp(x, y).
Given a set P of certain objects, let DP(x, y) denote

the random variable defined as

DP(x, y) = max
p∈P

|d(x, p)− d(p, y)|,

and let ǫP(x, y), also called error, denote the random
variable defined as

ǫP(x, y) = d(x, y)−DP(x, y) = min
p∈P

d(x, y)−|d(x, p)−d(p, y)|.

Note that ǫP(x, y) is always non negative. The expected
value of ǫP is

E[ǫP(x, y)] =

∫ ∞

0

u · Pr(ǫP (x, y) = u) du.

The problem of finding the best set of pivots, referred to
as pivot selection problem in the following, is defined as
follows. Given k ≥ 1, find the set P∗ of certain objects such
that

P∗ = argmin
P:|P|=k

Q ({E[ǫP(x, y)] | x, y ∈ DS}) , (8)

where Q : ℘(R+
0) 7→ R

+
0 is a penalty function suitable to

measure the error distribution, with ℘(S) denoting the
power set of the set S.
In order to estimate the error distribution we should

know in advance the query objects to be employed in the
computation of the error. However, since this informa-
tion cannot be available, we make the assumption that
the queries follow the distribution of the data set objects
(as already done in other contexts [24]).
Moreover, we point out that in the literature the set of

pivots is singled out among the data set objects, and in
the following we consider this setting.
However, since pivots are certain objects, for the pur-

pose of singling out the optimal set of pivots, we need
to replace the uncertain objects in DS with a set of
representative certain objects, say this set cert(DS). We
assume that each object x in DS provides one repre-
sentative cert(x) to the set cert(DS), that is cert(DS) =
{cert(x) | x ∈ DS}. An example of set cert(DS) is that
composed of the means x of the objects x in DS.
Moreover, we assume that the objects in the set

cert(DS) are already explicitly encoded in the descrip-
tion of the pdfs associated with uncertain objects (in their
parameters, the region of definition, some histograms, or
other).

5.1 Complexity Analysis

In this section, we investigate the computational com-
plexity of the pivot selection problem.
With this aim, we introduce the decision version of the

pivot selection problem, also called pivot decision problem,
defined as follows: given a set DS of uncertain objects,
a penalty function Q, a positive integer k ≥ 1 and a non
negative real number t, decide whether there exists a set of
certain objects P ⊆ cert(DS) such that |P| = k and

Q ({E[ǫP(x, y)] | x, y ∈ DS}) ≤ t. (9)

We denote an instance of this problem by 〈DS,Q, k, t〉.
The following theorem provides a lower bound to the

computational complexity of the pivot decision problem.
Theorem 5.1: The pivot decision problem 〈DS,Q, k, t〉

is NP-hard.
The contributions of Theorem 5.1 can be summarized as
follows:

• First of all, it states that the pivot selection is a source
of complexity on its own;

13

• second, it implies that the pivot decision problem
is NP-complete whenever the integration is tractable
[32] or in any fixed dimensionality;

• last, but not the least, it captures the complexity of
the certain case.

Next, we provide the formal proof of the theorem.
Proof of Theorem 5.1: The proof is by reduction from the
Vertex Cover problem [33]: given an undirected graph
G = (V,E) and a positive integer k ≤ |V |, is there a
vertex cover of size k or less for G, i.e., a subset V ′ ⊆ V
with |V ′| ≤ k such that for each edge {x, y} ∈ E at least
one of x and y belongs to V ′?
Let G = (V,E) be an undirected graph. Without loss

of generality assume that the graph G is connected.
Let aV denote an attribute whose domain D(AV) is V ,

and let AV denote the (singleton) set of attributes {aV }.
For each node x ∈ V , let ox denote the certain object

on AV having value x. For each W ⊆ V , let OW denote
the set of certain objects {ox | x ∈ W}. Moreover, for
each x ∈ V , let ux denote the uncertain object having
associated the pdf fx defined on D(AV) and such that
fx(y) is δ(0) if y = x and 0 otherwise, where δ(t)
denotes the Dirac delta function. Let UV denote the set
of uncertain objects {ux | x ∈ V }.
Let a and b be two positive real numbers such that b =

2a, and let dG denote the distance metric on the objects
in OV defined as follows: dG(ox, oy) = b if (x, y) ∈ E,
and dV (ox, oy) = a if (x, y) 6∈ E.
Let DSG denote the uncertain data set consisting of

the set of objects UV and such that the distance metric
associated with the certain objects in the domain D(AV)
is dG.
Given a graph G = (V,E), let G∗ = (V ∗, E∗) be the

graph obtained as follows. For each node x ∈ V , the set
V ∗ contains the node x and two new nodes, named x′

and x′′. Let V ′ = {x′ | x ∈ V } and V ′′ = {x′′ | x ∈ V }.
Then, V ∗ = V ∪ V ′ ∪ V ′′. The set of edges E∗ is
E ∪ E′, where E′ is the following set of new edges:
{{x, x′}, {x′, x′′} | x ∈ V }.
Figure 6b shows an example of graph G∗ which is

associated with the input graph reported in Figure 6a.
Let Qm be a penalty function such that, for each set S

of non negative real numbers it holds that

Qm(S) > 0 if and only if max(S) > 0. (10)

Given a graph G = (V,E) and a positive integer
number k, next we prove that G has a vertex cover of
size equal to k if and only if

〈DSG∗ ,Qm, n+ k, 0〉
is a “yes” instance, where n = |V |.
We assume that for each uncertain object ux of DSG∗ ,

it holds that cert(ux) = ox. Hence, the set cert(UV ∗) is
OV ∗ .
We note that, for each pair ux, uy of uncertain objects

of DSG∗ , it holds that

E[ǫP(ux, uy)] = dG∗(ox, oy)−max
p∈P

|dG∗(ox, p)−dG∗(p, oy)|.

Also, we note that, for each P ⊆ OV ∗ and for each pair
ux and uy of uncertain objects such that either ox ∈ P
or oy ∈ P , it holds that E[ǫP(ux, uy)] = 0. In fact, in this
case the error ǫP(ux, uy) is minimized for p = oy (or,
equivalently, p = ox) and it evaluates to dG∗(ox, oy) −
dG∗(ox, oy) + dG∗(oy , oy) = 0.
In order to complete the proof, we need first to prove

the following two claims.
Claim 5.2: For each P ⊆ OV ∗ and for each pair ux and

uy of uncertain objects such that {x, y} ∈ E∗, it holds that
E[ǫP(ux, uy)] = 0, if either ox ∈ P or oy ∈ P . Otherwise
E[ǫP(ux, uy)] ≥ a.

Proof: Since {x, y} ∈ E∗, the distance dG∗(ox, oy) is
b by definition. Assume that neither ox ∈ P nor oy ∈ P .
Then, for each p = oz ∈ P , we have three cases:

– both {x, z} ∈ E∗ and {z, y} ∈ E∗. Then,
dG∗(ox, oy)−|dG∗(ox, oz)−dG∗(oz , oy)| = b−|b−b| = b;

– both {x, z} 6∈ E∗ and {z, y} 6∈ E∗. Then,
dG∗(ox, oy)−|dG∗(ox, oz)−dG∗(oz , oy)| = b−|a−a| =
b;

– {x, z} ∈ E∗ and {z, y} 6∈ E∗ (or, vice versa). Then,
dG∗(ox, oy)−|dG∗(ox, oz)−dG∗(oz , oy)| = b−|b−a| =
a.

Thus, E[ǫP(ux, uy)] ≥ min{a, b} = a.
Claim 5.3: For each P ⊆ OV ∗ and for each pair ux and

uy of uncertain objects such that {x, y} 6∈ E∗, it holds that
E[ǫP(ux, uy)] ≤ 2a− b if and only if (1) either ox ∈ P or
oy ∈ P , or (2) there exists oz ∈ P such that {x, z} ∈ E∗

and {z, y} 6∈ E∗. Otherwise E[ǫP(ux, uy)] = a > 2a− b.
Proof: Since {x, y} ∈ E∗, the distance dG∗(ox, oy) is

a by definition. Assume that neither ox ∈ P nor oy ∈ P .
Then, for each p = oz ∈ P , we have three cases:

– both {x, z} ∈ E∗ and {z, y} ∈ E∗. Then,
dG∗(ox, oy)−|dG∗(ox, oz)−dG∗(oz , oy)| = a−|b−b| =
a;

– both {x, z} 6∈ E∗ and {z, y} 6∈ E∗. Then,
dG∗(ox, oy)−|dG∗(ox, oz)−dG∗(oz, oy)| = a−|a−a| =
a;

– {x, z} ∈ E∗ and {z, y} 6∈ E∗ (or, vice versa). Then,
dG∗(ox, oy)−|dG∗(ox, oz)−dG∗(oz , oy)| = a−|b−a| =
2a− b.

Now, we can resume the main proof.
(⇒) Assume that G has a vertex cover C of size

k. Let C be {x1, . . . , xk}. Now we show that PC =
{ox1

, . . . , oxk
} ∪ {ox′ | x ∈ V } is a set of pivots of size

n+ k such that

Qm({E[ǫPC
(ux, uy)] | ux, uy ∈ DSG∗}) = 0.

With this aim, for each ux, uy ∈ DSG∗ it must be
verified that E[ǫPC

(ux, uy)] = 0. Two cases are to be
considered, that are {x, y} ∈ E∗ and {x, y} 6∈ E∗.
Assume that {x, y} ∈ E∗. Since C is a vertex cover,

then it is the case that either x ∈ C, hence ox ∈ PC , or
y ∈ C, hence oy ∈ PC . Thus, E[ǫPC

(ux, uy)] = 0.
Conversely, assume that {x, y} 6∈ E∗. If either ox ∈ PC

or oy ∈ PC , then E[ǫPC
(ux, uy)] = 0. Vice versa, if ox 6∈

PC and oy 6∈ PC :

14

– Assume that both x and y belong to V . Recall that
for each x′ in V ′ the object ox′ is in PC . Thus, by
definition of E∗, {x, x′} ∈ E∗ and {y, x′} 6∈ E∗, and,
by Claim 5.3, E[ǫPC

(ux, uy)] ≤ 2a− b = 0;
– If both x and y belong to V ′′, then {x, x′} ∈ E∗ and

{y, x′} 6∈ E∗, and E[ǫPC
(ux, uy)] = 0;

– If x belongs to V , y belongs to V ′′, and y 6= x′′, then
{x, x′} ∈ E∗ and {y, x′} 6∈ E∗, and E[ǫPC

(ux, uy)] =
0;

– Consider, finally, the case y = x′′. Since ox 6∈ PC

(i.e. x 6∈ C), the graph G is connected, and C is a
vertex cover for G∗, it is the case that there exists
z ∈ V such that {x, z} ∈ E and z ∈ C, and, thus,
oz ∈ PC . Moreover, {x, z} ∈ E∗ and {z, x′′} 6∈ E∗,
and E[ǫPC

(ux, uy)] = 0.

(⇐) Assume that there exists a subset P of cert(DSG∗)
having size n+ k such that

Qm({E[ǫP(ux, uy)] | ux, uy ∈ DSG∗}) = 0.

Then, by Claim 5.2, it is the case that for each ux, uy ∈
DSG∗ such that {x, y} ∈ E∗, it holds that either ox ∈ P
or oy ∈ P . This means that the set CP = {x | ox ∈ P} is
a vertex cover for the graph G∗.
Consider the set of edges E′′ = {{x′, x′′} | x ∈ V } of

E∗. For each edge {x′, x′′} ∈ E′′, either x′ or x′′ have to
be in CP . Thus, CP \ (V ′ ∪ V ′′) is a vertex cover of G
whose cardinality is not greater than k. �

It can be easily verified that the arithmetic mean and
the maximum are penalty functions complying with the
property of the function Qm employed in the reduction
of Theorem 5.1 (see Equation (10)). Hence, the following
result follows from Theorem 5.1.
Theorem 5.4: Let Q ∈ {max,mean}. Then the problem

〈DS,Q, k, t〉 is NP-hard.
In particular, as far as the maximum function is con-

cerned, the following property can be checked.
Remark 5.5: If Qm is set to max in the reduction of

Theorem 5.1, then the reduction still holds for any value
a ∈ [b2 , b), provided that the threshold t is set to a.
Based on this property, the complexity result stated in

Theorem 5.1 can be extended to the Euclidean space, as
accounted for in the following Theorem.
Theorem 5.6: Let DS be an uncertain data set on the

domain R
m equipped with the Euclidean distance. Then

the 〈DS,Q, k, t〉 problem is NP-hard.
Proof: Let G = (V,E) be an indirect graph. Assume

that an arbitrary order has been established on the nodes
in V , so that each edge e ∈ E of the graph can be denoted
as a pair e = (u, v), with u preceding v according to the
order.
Next, we report a procedure to map each node v of

G to a point pv of R
m, in a way so that d(pu, pv) = b

iff (u, v) ∈ E and d(u, v) = a iff (u, v) 6∈ E, where d
denotes the Euclidean distance and a and b are positive
real numbers with a ∈ [b2 , b).
Consider the domain R

m with m = |V | + |E|. In
particular, |E| dimensions, denoted as e1, . . . , e|E|, are

(a) An example of input graph G.

(b) The graph G∗ described in Theorem 5.1.

e1 e2 e3 e4 e5 e6 e7 av1 av2 av3 av4 av5 av6

v1 0 0 1 1 1 1 1
√
4 0 0 0 0 0

v2 2 1 0 0 1 1 1 0
√
3 0 0 0 0

v3 1 1 1 2 0 0 1 0 0
√
3 0 0 0

v4 1 1 1 1 2 1 1 0 0 0
√
5 0 0

v5 1 2 2 1 1 1 0 0 0 0 0
√
3 0

v6 1 1 1 1 1 2 2 0 0 0 0 0
√
4

(c) The points pv associated with the graph G (see
Theorem 5.6).

Fig. 6: Examples concerning reductions described in
Theorems 5.1 and 5.6.

associated with the edges in E. Moreover, for each node
v ∈ V , there is one dimension av, associated with v.
Let mv be the difference between |V | and the number

deg(v) of edges incident the node v. Each node v ∈ V is
mapped to a point pv of Rm as follows:

• for each ei (1 ≤ i ≤ |E|):
– pv[ei] = 0 if ei = (v, w);
– pv[ei] = 2 if ei = (w, v);
– pv[ei] = 1 if ei does not join v;

• pv[av] =
√
mv ;

• pv[a] = 0, for each other dimension a.

Figure 6c reports an example of this mapping on the
nodes of the graph G in Figure 6a.
Assume that v and w are not joined by edges. In this

case: (i) on deg(v) dimensions in the set {e1, . . . , e|E|}, pv
assumes value 0 or 2, while pw assumes value 1; (ii) on
deg(w) dimensions in the set {e1, . . . , e|E|}, pw assumes
value 0 or 2, while pv assumes value 1; (iii) on all the
other dimensions in the set {e1, . . . , e|E|}, both pv and pw
assume value 1; (iv) on the av dimension, pv assumes
value

√
mv, while pw assumes value 0; (v) on the aw

dimension, pw assumes value
√
mw, while pv assumes

value 0; (vi) on all the other dimensions au, with u 6= v

15

and u 6= w, both pv and pw assume value 0. Then, the
distance between pv and pw is

a =

√
deg(v) + deg(w) +

√
mv

2
+
√
mw

2
=
√
2|V |.

Assume now that v and w are joined by the edge ei.
In this case, on the dimension ei, either pv[ei] = 0 and
pw[ei] = 2 or vice versa. As for the other dimensions:
(i) on deg(v) − 1 dimensions in the set {e1, . . . , e|E|}, pv
assumes value 0 or 2, while pw assumes value 1; (ii)
on deg(w) − 1 dimensions in the set {e1, . . . , e|E|}, pw
assumes value 0 or 2, while pv assumes value 1; (iii)
on all the other dimensions in the set {e1, . . . , e|E|}, both
pv and pw assume value 1; (iv) on the av dimension,
pv assumes value

√
mv, while pw assumes value 0; (v)

on the aw dimension, pw assumes value
√
mw, while pv

assumes value 0; (vi) on all the other dimensions au,
with u 6= v and u 6= w,both pv and pw assume value 0.
Then, the distance between v and w is

b =

√
22 + deg(v)− 1 + deg(w) − 1 +

√
mv

2
+
√
mw

2
=

=
√
2 + 2|V |.

It can be concluded that the distance b between pair of
points associated with nodes joined by an edge is strictly
larger than the distance a between pair of points associ-
ated with nodes not joined by any edge. In particular, it
holds that the ratio between a and b is:

a

b
=

√
2|V |√

2|V |+ 2
=

√
|V |

|V |+ 1
∈ [0.5, 1).

Thus, letting Q be max, by Theorem 5.1 and Remark 5.5
the result follows.

5.2 Pivot-Selection Algorithm

Due to Theorem 5.1, no polynomial time algorithm is
conjectured to be able to determine an optimal set of
pivots. In this section we describe an heuristic algorithm
with limited time bounds for selecting a good quality set
of pivots when uncertain objects are taken into account.
The algorithm, reported in Figure 7, is based on a

greedy selection of pivots guided by the optimality
criterion introduced in Section 5. In the following, we
consider as penalty function Q the mean. In particular,
the algorithm performs k iterations. It starts with an
empty set of pivots P∗ and, then, at each iteration,
augments P∗ with the object p∗ from cert(DS) that
minimizes the penalty function when P = P∗ ∪ {p∗} is
considered as set of pivots.
Random sampling is exploited in order to

estimate the value of the penalty function
Q ({E[ǫPi

(x, y)] | x, y ∈ DS}). With this aim, the
algorithm randomly selects T pairs (xj , yj) of uncertain
objects from DS and, for each of them, a pair (vxj , v

y
j)

of values distributed according to fxj and fyj .
For each set of pivots, the value of the penalty function

is estimated by taking into account the T randomly

Input: the uncertain data set DS = {x1, . . . , xn}
the number k of pivots

Output: the set P∗ of pivots
Method:

1. P∗ = ∅
2. Q∗ = ∞
3. for l = 1 to k do
4. for i = 1 to n do
5. P = P∗ ∪ {cert(xi)}
6. S = 0
7. for j = 1 to T do
8. randomly pick an uncertain object xj from DS
9. randomly pick an uncertain object yj from DS
10. randomly pick a value vxj distributed according to fxj

11. randomly pick a value v
y
j distributed according to fyj

12. S = S +minp∈P{d(vxj , v
y
j)− |d(vxj , p)− d(vyj , p)|}

13. endfor

14. Q = S
T

15. if Q < Q∗ then
16. Q∗ = Q
17. p∗ = cert(xi)
18. endif
19. endfor
20. P∗ = P∗ ∪ {p∗}
21. endfor
22. return P∗

Fig. 7: Pivot selection algorithm.

selected pairs (vxj , v
y
j). In particular, the variable S accu-

mulates the valuesminp∈P{d(vxj , vyj)−|d(vxj , p)−d(vyj , p)|}
associated with the pairs (vxj , v

y
j).

Estimating the penalty function value. Next we show how
the value of the parameter T can be set to obtain a safe
estimation of the penalty function value Q. Let ǫP be the
random variable associated with the value E[ǫP(x, y)],
then the best set of pivots P∗ is such that

P∗ = argmin
P:|P|=k

E[ǫP].

In order to estimate the value E[ǫP], we exploit random
sampling and compute the penalty function value Q as
the ratio S

T
, as shown in Figure 7 (lines 6-14).

Let λ denote the maximum value associated with
the error ǫP(x, y), that is to say the maximum distance
between two data set objects x and y, let ξ ∈ [0, 1]
be a relative error threshold, and let δ be a probability
threshold. Our goal is that

Pr

(∣∣∣∣
Q

λ
− E[ǫP]

λ

∣∣∣∣ < ξ

)
> 1− δ, (11)

namely, that the probability that the difference between
the estimated and the true value of the penalty function
is lower that ξ is greater than 1− δ.

The above goal can be reached by properly setting the
size T of the sample used to determine the value Q. In
particular, an upper bound on the probability for the
sum of random variables to deviate from its expected
value can be obtained from the Hoeffding’s inequality [34]:

Pr (|Q−E[ǫP]| ≥ t) ≤ 2 · exp
(
−2T

(
t

λ

)2
)
,

16

δ \ ξ 0.1 0.05 0.01
0.1 150 600 14,979
0.05 185 738 18,445
0.01 265 1,060 26,492

TABLE 1: Size T of the sample needed for estimating the
penalty function value.

or, equivalently:

Pr (|Q−E[ǫP]| < t) > 1− 2 · exp
(
−2T

(
t

λ

)2
)
.

From the above equation, it follows that:

Pr

(∣∣∣∣
Q

λ
− E[ǫP]

λ

∣∣∣∣ <
t

λ

)
> 1− 2 · exp

(
−2T

(
t

λ

)2
)
,

and, by setting ξ equal to t
λ
, we finally obtain the

following expression:

Pr

(∣∣∣∣
Q

λ
− E[ǫP]

λ

∣∣∣∣ < ξ

)
> 1− 2 · exp

(
−2Tξ2

)
.

By comparing the last inequality with Equation (11), it
follows that our goal is reached for

T ≥ 1

2ξ2
log

(
2

δ

)
.

Table 1 reports the size T of the sample needed to cor-
rectly estimate the penalty function in correspondence
of various values of ξ and δ.

Cost of the algorithm. As for the temporal cost of the
algorithm, it corresponds to the cost of estimating n · k
times the penalty function. The cost of computing the
error on a single pair (vxi , v

y
i) of values, at the l-th

iteration, is O(l). Thus, the cost of estimating the penalty
function value is O(T · l). However, since l − 1 pivots
are held fixed during the estimation, the above cost can
be reduced to O(T) by storing the randomly selected
pairs (vxj , v

y
j) are reusing them throughout the execution

of the algorithm. Summarizing, the temporal cost of the
algorithm is linear, that is O(n · k · T).
We note that criteria different from that used could

be adopted to select the sets of pivots P to be tested
for optimality; among them all the strategies suitable
to face intractable problems, such as heuristic search,
local search, genetic algorithms, and so on. We point
out that our goal here is not to explore the behavior of
different pivot selection policies, but rather to show that
(i) the algorithm together with the estimation technique
is able to select a set of pivots scoring a value for the
penalty function Q sensibly better than those associated
with randomly selected set of pivots, and that (ii) the
criterion here introduced is effective in enhancing the
quality of the selected set of pivots, namely to improve
the gain measure. These aspects will be investigated in
the subsequent section devoted to experimental results.

2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5
Synthetic data set (spread=0.10, δ=0.01, ε=0.05)

Number of pivots, k

P
en

al
ty

, Q

rand pivots
opt pivots

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
Ionosphere data set (spread=0.10, δ=0.01, ε=0.05)

Number of pivots, k

P
en

al
ty

, Q

rand pivots
opt pivots

2 4 6 8 10
8

10

12

14

16

18

20

22

24

26
Haberman data set (spread=0.10, δ=0.01, ε=0.05)

Number of pivots, k

P
en

al
ty

, Q

rand pivots
opt pivots

2 4 6 8 10
10

0

10
1

10
2

10
3

Transfusion data set (spread=0.10, δ=0.01, ε=0.05)

Number of pivots, k

P
en

al
ty

, Q

rand pivots
opt pivots

Fig. 8: Optimized vs random method: penalty function.

5.3 Experiments

In this section, we test the effectiveness of the quality
criterion introduced at the beginning of Section 5 and of
the algorithm introduced in Section 5.2.
In order to check the validity of the criterion for

measuring the goodness of a set of pivots formalized in
Equation (8), we compared the behavior of the UP–index
using the pivots returned by the algorithm described
in Section 5.2 (also referred to as optimized algorithm in
the following) with the behavior of the UP–index using
random pivots (also referred to as random algorithm in
the following).
In particular, in order to quantify advantages of the

optimized method over the random one, we measured
the improvement and the time improvement. The improve-
ment is defined as

Improvement = 1− candsopt − neighs

cands− neighs
,

where candsopt (cands, resp.) is the number of candi-
date objects selected by the optimized (random, resp.)

method. Intuitively, the term
candsopt−neighs

cands−neighs
represents

the relative (w.r.t. the number of candidates selected by
the random method) number of probability distances
that are required to be computed during the filtering
phase of the optimized method out of those involving
the true neighbors. The time improvement is defined as

T ime improvement = 1− topt − tneighs
tpivots − tneighs

,

where topt (tpivots, resp.) denotes the time employed by
the optimized (random, resp.) algorithm to answer the
range query, and tneighs is as defined in Section 4.
Figure 8 compares the penalty value associated with

pivots returned by the optimized algorithm with those as-
sociated with the random one. In particular, the algorithm
of Figure 7 has been executed 100 times on the Syntethic

17

3 5 10
0

0.1

0.2

0.3

0.4

0.5
Synthetic data set

Im
pr

ov
em

en
t

Number of pivots, k

Improv.
Time improv.

3 5 10
0

0.1

0.2

0.3

0.4

0.5
Ionosphere data set

Im
pr

ov
em

en
t

Number of pivots, k

Improv.
Time improv.

3 5 10
0

0.1

0.2

0.3

0.4

0.5
Haberman data set

Im
pr

ov
em

en
t

Number of pivots, k

Improv.
Time improv.

3 5 10
0

0.1

0.2

0.3

0.4

0.5
Transfusion data set

Im
pr

ov
em

en
t

Number of pivots, k

Improv.
Time improv.

Fig. 9: Optimized vs randommethod: gain improvement.

(with n = 10,000 and m = 2), Ionosphere, Haberman, and
Transfusion data sets (with spread 0.10), with parameters
δ = 0.01 and ξ = 0.05 (corresponding to T = 1,060),
and k ranging from 1 to 10. The random algorithm has
been executed 1,000 times on the same data sets. We ran
the optimized algorithm different times in order to take
into account variability associated with the estimation
technique.
The solid curve reports the average value of the

penalty function associated with optimized pivots, while
dotted curves show their minimum and maximum
penalty value. The dashed curve reports the average
penalty value associated with random pivots. The plot
shows that the penalty associated with optimized pivots
is always sensibly smaller than the average penalty asso-
ciated with random ones, thus confirming that algorithm
of Figure 8 is effective. Moreover, it appears that the
gap between the random and optimized pivots tends to
decrease with their number. This can be explained by
noticing that the greater the size of the set of pivots P ,
the greater the chance of reducing the error E[ǫP(x, y)]
associated with a generic pair (x, y) of data set objects.
Moreover, to show how the penalty function Q varies

with respect to the parameters δ and ξ, we next report
the average value of Q on the Synthetic data set for k = 3
optimized pivots:

δ \ ξ 0.1 0.05 0.01
0.1 0.6135 0.5589 0.4352
0.05 0.6134 0.5339 0.4179
0.01 0.6085 0.5190 0.4102

In order to compute improvement and time improve-
ment, we performed one hundred uncertain queries,
using k = 3, k = 5, and k = 10 pivots, with radius R
corresponding to the maximum selectivity ρ considered
in Section 4. Figure 9 reports the results of these exper-
iments. As far as the Synthetic data set is concerned,
the plot on the upper left corner of the figure shows

that the improvement is monotonically decreasing with
the number of pivots employed, though in any case
noticeable, being always approximatively above the 20%
and close to the 50% for three pivots. As for the other
three data sets, the improvement first ameliorates and
then worsens, thus reaching its maximum for k = 5, in
correspondence of which the improvement is always ap-
proximatively above the 20%. The smaller improvement
is scored by the Transfusion data set, which is also the
data set that performs better when random pivots are
employed.
All the plots show that the optimized pivots are effec-

tive in reducing both the number of useless candidates
and the query execution time. Particularly, it follows
from the discussion on the curves shown in Figure 8,
that the improvement is expected to decrease with the
number of pivots and, indeed, this kind of trend is
confirmed by experimental results in Figure 9. As for the
different behavior of the synthetic data set family with
respect to the other data sets, we notice that objects in the
first data set are randomly placed, while objects in the
other data sets comply with real scattered data. Thus,
for the latter data sets, the fact that the improvement
presents a maximum for k = 5, reveals that there is a sort
of trade off between placement of pivots P with respect
to the overall data distribution and expected reduction
of the error E[ǫP(x, y)] associated with a set P having
size k.

6 CONCLUSIONS

In this work we dealt with the problem of quickly an-
swering range queries over uncertain objects in a general
metric space, and introduced a novel indexing technique,
called UP–index. To the best of our knowledge, this is the
first work providing an effective technique for indexing
uncertain objects coming from general metric spaces.
We generalized the reverse triangular inequality to the

probabilistic setting in order to exploit it to recognize
non-neighbor objects without performing the heavy op-
eration of computing the distance probability. Then, we
introduced the UP–index and showed how to employ
it in order to speed up range query computation. Im-
portantly, the cost of the introduced discard condition is
independent of the data dimensionality, while deciding
whether an object belongs or not to the answer of the
query amounts to evaluate a multi-dimensional integral.
As a results, our technique permits to save a vast amount
of time.
The experimental campaign validated the effectiveness

of the proposed approach, in that it pointed out that our
method is able to greatly reduce the number of candidate
objects and to significantly improve time performances,
and revealed that the introduced technique is even
preferable to indexing techniques specifically designed
for the Euclidean space.
We provided a criterion to measure the quality of a set

of pivots and studied the problem of selecting a good

18

set of pivots. Moreover, we proved that selecting a set
of pivots that minimizes the expected error in a general
metric space is NP-hard, and introduced an estimation
algorithm with statistical guarantees for selecting a good
quality set of pivots.
Summarizing, this work establishes the foundations

for indexing general metric spaces in the uncertain sce-
nario and, as such, we believe it opens other interesting
research directions.

REFERENCES

[1] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. S. Vitter, “Efficient
indexing methods for probabilistic threshold queries over uncer-
tain data,” in Proceedings of the Thirtieth international conference on
Very large data bases (VLDB), 2004, pp. 876–887.

[2] Y. Tao, R. Cheng, X. Xiao, W. K. Ngai, B. Kao, and S. Prabhakar,
“Indexing multi-dimensional uncertain data with arbitrary prob-
ability density functions,” in VLDB ’05: Proceedings of the 31st
international conference on Very large data bases, 2005, pp. 922–933.

[3] T. Green and V. Tannen, “Models for incomplete and probabilistic
information,” IEEE Data Eng. Bull., vol. 29, no. 1, pp. 17–24, 2006.

[4] Y. Tao, X. Xiao, and R. Cheng, “Range search on multidimensional
uncertain data,” ACM Transactions on Database Systems, vol. 32,
no. 3, p. 15, 2007.

[5] C. Aggarwal and P. Yu, “A survey of uncertain data algorithms
and applications,” IEEE Trans. Knowl. Data Eng., vol. 21, no. 5, pp.
609–623, 2009.

[6] P. K. Agarwal, S.-W. Cheng, Y. Tao, and K. Yi, “Indexing uncertain
data,” in PODS ’09: Proceedings of the twenty-eighth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, 2009,
pp. 137–146.

[7] C. C. Aggarwal, Managing and Mining Uncertain Data, ser. Ad-
vances in Database Systems. Springer, 2009, vol. 35.

[8] E. Chávez, G. Navarro, R. Baeza-Yates, and J. Marroquı́n, “Search-
ing in metric spaces.” ACM Computing Surveys, vol. 33, no. 3, pp.
273–321, 2001.

[9] H. Samet, Foundations of Multidimensional and Metric Data Struc-
tures (The Morgan Kaufmann Series in Computer Graphics and Geo-
metric Modeling). Morgan Kaufmann Publishers Inc., 2005.

[10] P. Zezula, G. Amato, V. Dohnal, and M. Batko, Similarity Search:
The Metric Space Approach, ser. Advances in Database Systems.
Springer, 2006, vol. 32.

[11] V. Levenshtein, “Binary codes capable of correcting deletions,
insertions, and reversals,” Soviet Physics Doklady, vol. 10, pp. 707–
710, 1966.

[12] H.-P. Kriegel, P. Kunath, M. Pfeifle, and M. Renz, “Probabilistic
similarity join on uncertain data,” in International Conference on
Database Systems for Advanced Applications, 2006, pp. 295–309.

[13] M. Chau, R. Cheng, B. Kao, and J. Ng, “Uncertain data mining:
An example in clustering location data,” in Pacific-Asia Conference
on Knowledge Discovery and Data Mining, 2006, pp. 199–204.

[14] S. Łukaszyk, “A new concept of probability metric and its ap-
plications in approximation of scattered data sets,” Computational
Mechanics, vol. 33, no. 4, pp. 299–304, 2004.

[15] W. Ngai, B. Kao, C. Chui, R. Cheng, M. Chau, and K. Yip,
“Efficient clustering of uncertain data,” in International Conference
on Data Mining, 2006, pp. 436–445.

[16] S. Singh, C. Mayfield, S. Prabhakar, R. Shah, and S. Hambrusch,
“Indexing uncertain categorical data,” in Proceedings of the IEEE
23rd International Conference on Data Engineering (ICDE), April
2007, pp. 616–625.

[17] Y. Zhang, X. Lin, W. Zhang, J. Wang, and Q. Lin, “Effectively
indexing the uncertain space,” IEEE Trans. Knowl. Data Eng.,
vol. 22, no. 9, pp. 1247–1261, 2010.

[18] J. Bentley, “Multidimensional binary search trees used for associa-
tive searching,” Communications of the ACM, vol. 18, pp. 509–517,
1975.

[19] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The
r*-tree: An efficient and robust access method for points and
rectangles,” in Proc. of the SIGMOD Conference, 1990, pp. 322–331.

[20] S. Berchtold, D. Keim, and H.-P. Kriegel, “The x-tree: An index
structure for high-dimensional data,” in Proc. of the Conf. on VLDB,
1996, pp. 28–39.

[21] P. N. Yianilos, “Data structures and algorithms for nearest neigh-
bor search in general metric spaces,” in ACM-SIAM Symp. on
Discrete Algorithms (SODA), 1993, pp. 311–321.

[22] L. Micó, J. Oncina, and E. Vidal, “A new version of the nearest-
neighbour approximating and eliminating search algorithm (aesa)
with linear preprocessing time and memory requirements,” Pat-
tern Recognition Letters, vol. 15, no. 1, pp. 9–17, 1994.

[23] E. Chávez, J. L. Marroquı́n, and R. A. Baeza-Yates, “Spaghettis: An
array based algorithm for similarity queries in metric spaces,” in
Symp. on String Processing and Information Retrieval (SPIRE), 1999,
pp. 38–46.

[24] B. Bustos, G. Navarro, and E. Chávez, “Pivot selection techniques
for proximity searching in metric spaces,” Pattern Recognition
Letters, vol. 24, no. 14, pp. 2357–2366, 2003.

[25] B. Bustos, O. Pedreira, and N. R. Brisaboa, “A dynamic pivot
selection technique for similarity search,” in ICDE Workshops,
2008, pp. 394–401.

[26] L. Ares, N. Brisaboa, M. Esteller, O. Pedreira, and A. Places,
“Optimal pivots to minimize the index size for metric access
methods,” in International Workshop on Similarity Search and Ap-
plications (SISAP), 2009, pp. 74–80.

[27] J. F. Traub, G. W. Wasilkowski, and H. Woźniakowski, Information-
based complexity. San Diego, CA, USA: Academic Press Profes-
sional, Inc., 1988.

[28] N. Metropolis and S. Ulam, “The monte carlo method,” Journal of
the American Statistical Association, vol. 44, no. 247, pp. 335–341,
1949.

[29] P. Davis and P. Rabinowitz, Methods of Numerical Integration.
Dover, 1984.

[30] A. Frank and A. Asuncion, “UCI machine learning repository,”
2010. [Online]. Available: http://archive.ics.uci.edu/ml

[31] R. Finn, J. Mistry, J. Tate, P. Coggill, A. Heger, J. Pollington,
O. Gavin, P. Gunesekaran, G. Ceric, K. Forslund, L. Holm,
E. Sonnhammer, S. Eddy, and A. Bateman, “The pfam protein
families database,” Nucleic Acids Research, vol. 38, no. Database
Issue, pp. D211–D222, 2010.

[32] F. J. Hickernell and H. Wozniakowski, “Integration and approxi-
mation in arbitrary dimensions,” Advances in Computational Math-
ematics, vol. 12, no. 1, pp. 25–58, 2000.

[33] M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

[34] W. Hoeffding, “Probability inequalities for sums of bounded
random variables,” Journal of the American Statistical Association,
vol. 58, no. 301, pp. 13–30, 1963.

