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Distributed Nearest Neighbor Based
Condensation of Very Large Datasets

Fabrizio Angiulli and Gianluigi Folino

Abstract—In this work, PFCNN, a distributed method for computing a consistent subset of very large data set for the nearest neighbor
classification rule is presented. In order to cope with the communication overhead typical of distributed environments and to reduce
memory requirements, different variants of the basic PFCNN method are introduced. An analysis of spatial cost, CPU cost, and
communication overhead is accomplished for all the algorithms. Experimental results, performed on both synthetic and real very large
data sets, revealed that these methods can be profitably applied to enormous collections of data. Indeed, they scale-up well and are
efficient in memory consumption, confirming the theoretical analysis, and achieve noticeable data reduction and good classification
accuracy. To the best of our knowledge, this is the first distributed algorithm for computing a training set consistent subset for the
nearest neighbor rule.

Index Terms—classification, parallel and distributed algorithms, nearest neighbor rule, data condensation.
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1 INTRODUCTION become prohibitive.
Parallel and distributed computation can be exploited in
increasing dramatically, often they cannot take advantasfgeorderto manage eff|C|ent.Iy these e.normouslcollecuon; &l da
Furthermore, the emerging paradigm of grid computing [15]

these collections of potentially useful information siraa- h hiefl ded o | f i
hoc data mining algorithms may be unavailable and tradation as chietly provided access 1o 1arge resources of computing

machine learning and data analysis tools are practicabiie oROWer and stprage capacity. Typically, auser can ha”?“s th
on small data sets. unused and idle resources that organizations share in order

: . to solve very complex problems. Moreover, data reduction
A very useful task is to build a model of the data so Fhrough the partitioning of the data set into smaller subset
to obtain a classifier for prediction purposes. Thearest 9 P 9

neighbor rulef9], [28], [14] is one of the most extensively usecems © be a good approach. Unfortunately, to the best of

: e . : . our knowledge, no parallel or distributed version of corsit
nonparametric classification algorithms, simple to impdamn ; . )
. . . . . subset learning algorithms for the nearest neighbor ruge ha
yet powerful, owing to its theoretical properties guarairng been proposed in the literature
that for all distributions its probability of error is boued brop :

above by twice the Bayes probability of error. The naive im- This paper presenFs a distributed trammg set consistent
subset learning algorithm for the nearest neighbor rule, ex

plementation of this rule has no learning phase, in thatétsush. . . . . .

o . . . . ._hibiting high efficiency both in terms of time and of mem-
all the training set obj_ec_:ts in order to clas_sn‘y new mcogmmoéy usgageg.] The algor};thm called PECNN. for Parallel Fast
data. A number of training set condensation algorithms ha&ondensed Nearest Neighbor Rule, is a distributed verdion o

been proposed that extractcansistent subseaif the overall . ; .
training set, namely CNN, MCNN, NNSRM, FCNN, andthe sequential algorithm FCNN [3], which has been shown to

others [22], [19], [23], [13], [3], i.e. a subset that cofigc outperform all the other training set consistent subsehots.

classifies all the discarded training set objects through tE)|str|but|on of data and their consequent handling raiseyna

nearest neighbor rule. These algorithms have been showrPrr(1)blemS that can be faced in different ways if the usage

. . : . memory rather than the scalability or the execution time
some cases to achieve condensation ratios correspondang 10 ) T . :
. IS the main objective. Thus, different clever variants of th
small percentage of the overall training set.

However, the performances of these algorithms may degre}tfglaes'c distributed method are proposed, which bear in mind

considerably. both in terms of memorv and time consumotioncse aspects. The main contributions of our approach are th
Y ) y >ump {%'Ilowing: () PFCNN is the first distributed method for the
when they have to cope with huge datasets, consisting o

condensed nearest neighbor rulg) {t scales almost linearl
very large number of objects, each of which can have sever%ln 9 y
attributes. Indeed, this amount of data can be too large to i

d is efficient in memory consumptioniz4) it permits the
into the main memory. Furthermore, the execution time m

Even though data collecting capabilities of organizaties

Same model as the sequential version to be computed.

YThe rest of the paper is organized as follows: first of all,
Fabrizio Angiulli is with the Dipartimento di Elettronicanformatica e Section _2 briefly reviews the Se_quem'a| FCN_N rule; Sef:“cm
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ltaly. E-mail: f.angiuli@deis.unical.it. _ derives space requirements, and CPU and communication
Gianluigi Folino is with the Institute of High Performanceo@puting and fth hods: Secti 5 di K rel d h
Networking of the Italian National Research Council, VidBBcci 41C, 87036 costs of the methods; Section Iscusses work related to tha

Rende(CS), ltaly. E-mail: folino@icar.cnr.it. here presented; finally, Section 6 reports experimentaltes




Algorithm FCNN(T : training set) | | Description |
1) Initialize the setS to the empty set T Training set _ _
2) Initialize the setAS to the setCentroids(T") N Number of training set objects (the siZE| of T)
3) While the setAS is not empty: d Number of training set attributes plus the class label
a) Augment the sef with the setAS p Number of nodes (processors)
b) Initialize the setAS to the empty set ! Node identifier { < i < p) .
c) For each objecy in the setS, insert intoAS the T Tra!n!ng set partition assigned to node
representative object of the Voronoi enemieg;o S Training set consistent subset .
in T w.rt. S n Number of consistent subset objects (the $izeof S)
4 R h " AS | Objects to be added to the current consistent subset
) Return the se m Number of training set labels
; ; j Identifier of the class1(< j < m)
Fig. 1. The (sequential) FCNN rule. t Number of iterations executed by the PFCNN algorithm
k Current iteration numberl (< k < t)
Sk Consistent subsef at the beginning of théth iteration
; i ; ; i ASy | Incremental seAS at the beginning of théth iteration
ggt:(;tehtssynthetlc and real life very large high dimension alnk Number of objects inS. (the size|Se| of i)
: Any, | Number of objects ilASy, (the size|ASy| of Si)
ny, The size of the sef; U ASy, (n}, = ni + Ang)
2 THE FCNN RuULE M | The quantity) ", niAng

In this section, the sequential FCNN rule [3] is reviewedsFi
of all, some preliminary definitions are provided.

T denotes a labelled training set from a space with distance
d. Let « be an element off. Then, nn(z,T) denotes the
nearest neighbor aof in T according to the distancé and
I(x) the label associated with.

Given a labelled data s@t and an elemeny of the space,
the nearest neighbor rul&N(y, T") assigns tay the label of representative the nearest neighboryoin Voren(y, S, T),
the nearest neighbor af in T', i.e. NN(y,T') = l(nn(y,T)) that is the elementin(y, Voren(y,S,T)) of T. FCNN2 is

TABLE 1
Symbols used throughout the paper.

[9]. the name of the implementation of the FCNN rule using the
A subsetS of T' is said to be draining set consistent subsetsecond definition, which selects as representative thes clas
of T if, for eachz € T, I(z) = NN(z, S) [22]. centroid inVoren(y, S,T) closest toy, that is the element

Let S be a subset off, and lety be an element ofS. nn(y, Centroids(Voren(y,S,T))) of T.
Vor(y,S,T) denotes the sefz € T | Vy' € S,d(y,z) <

d(y', )}, which is the set of the elements Bfthat are closer As far as the comparison between the two methods in the

to y than to any other element of S, called theVoronoi cell sequential scenario is conc_erned [3],_ it can be said that the
of y in T w.rt. S. FCNNZ_rL_JIe appears to b_e I|tt|_e sen_smve to the complexfty o]

Furthermore, we define aoren(y, S,T) the set{z € the decision boundary, since it rapidly covers regions ef th
Vor(y,S,T) | I(z) # I(y)}, whose elements are callegSPace far from the centr0|ds_ of th.e classes and tend; torperfo
\Voronoi enemiesf y in T w.r.t. S. no more than few tens of iterations. The _FCNNl is shg_htly

Centroids(T) is the set containing the centroids of eacflower than the FCNN2 since it may require more iterations,
class label inT". The notion of centroid depends on the naturdP t0 @ few hundreds. On the other hand, the FCNN1 is likely
of the considered space. In the following we assume to dd@Select points very close to the decision boundary, andéen
with the Euclidean space. Given a set of poiithaving the May return a subset smaller than that of the FCNN2.

same class label, theentroidof S is the point ofS which is As for the time complexity of the method, le¥ denote

closest to the geometrical center f the size of the training séf and letn denote the size of the
The Fast Condensed Nearest Neighbor Rule [3], FCNN fgfhistent subsef computed, then the FCNN1 rule requires

short, relies on the following property: a stis a training o most Ny, distance computations to compare the elements
set consistent subset @f for the nearest neighbor rule iff for o¢ 7 \\ith the elements o5.

each elemeny of S, Voren(y,S,T) is empty.

The FCNN algorithm is shown in Figure 1. The algorithm Despite the algorithm being fast, it must be said that when it
initializes the consistent subsét with a seed element from copes with very large datasets the number of distance canput
each class label of the training sBt In particular, the seeds tions may grow and it might not meet the requirements of real-
employed are the centroids of the classe$'iThe algorithm time-like applications. In order to scale up the method ary ve
is incremental. During each iteration the setis augmented large datasets, a distributed implementation can be argloi
until the stop condition, given by the property above, iBideed, if the dataset is partitioned into disjoint subsetsh
reached. For each element 8f a representativeclement of allocated on a different node, by adopting a clever stratkgy
Voren(y,S,T) w.rt. y is selected and inserted inf total cost of the method can be reduced by a factor ideally

The behavior of two different definitions of representativequal to the number of nodes. In the following section, a
were investigated. FCNNL1 is the name of the implementatialistributed architecture for FCNN and its implementatisn i
of the FCNN rule using the first definition, which selects aimtroduced and discussed.



Let p be the number of nodes available. Each node is
identified by an integer numbeérsuch thatl < i < p. The
pseudo-code reported in Figure 3 is executed on the generic
nodei. The variables employed there are local to the nqde
except for those handled by parallel functions, which iadte
come from different nodes. When it is necessary to dististgui
the node: from which a variablev comes from, then the
notationv® will be used.

There follows a description of the data structures employed
and of how data is located on the different nodes.

As already clarified, the overall training sEt containingV
objects, is randomly partitioned inte equally sized disjoint

blocks Ti,...,T, and then each nodé receives in input

‘ Interconnection network ‘ the blockT;. Differently from the training sefl’, each node
maintains a local copy of the entire consistent sulsset

Fig. 2. PFCNN architecture. Furthermore, each node maintains two arraysirest and

rep. The arraynearest, having sizeX, contains for each point
z in T; its closest pOiﬂhearest[x]pin the setS. The array
3 THE PFCNN RULE AND ITS ARCHITECTURE Tep contains, for each poing in S, its representativeep|y]

) _ ) o ) of the misclassified points lying in the Voronoi cell gfin T;
Despite the FCNN algorithm being fast, its time requireraenyy rt. g.

grow with the size of the dataset. When huge collections Now it is possible to comment on the code reported in
of data have to be handled, it is interesting to scale-up thgyure 3.
method. It will be shown that a distributed imp|ementati0n First of a", Stepsl_3 Compute the geometrica' center of
of the FCNN algorithm, called PFCNN (for Parallel FCNN)gach training set class, while step$ compute the centroids
whose architecture is introduced next, can cope with tine ag(1],...,C[m] of each class.
memory requirements of large data sets. Two communication functions are employed in these
The general architecture of the PFCNNs algorithms igeps, that igarallel-sum and parallel-min. The parallel-
illustrated in Figure 2. The architecture is composedpof sum(v!,...,v?) is a parallel function which gathers the
nodesp, .. .7Pp. The original training sefl’ is partitioned (arrays Of) integer or real numbew’ ...,vP from the D
in p disjoint partitionsT, ..., T;, each assigned to a distinCthodes and then returns the sufh+ ...+ v? of these values.
node. PFCNN can also be used when the data set is alrea#¢ parallel-min((u*, v'), ..., (u?,v?)) is a parallel function
distributed among nodes and cannot be moved (i.e. for pgathering thep valuesu!, ..., u?, together with they integer
vacy reasons). Each nodecomputes, in parallel, the overallor real numbers?,. .., v?, and then returning the valug
condensed sef using only its partitiorl; of the training set. gssociated to the smallest numbéramongu?, ..., vP.
Note that there is a copy of the entire condensed data@'set Once the centroid§([1], ..., C[m] of the training set classes
on each node. However, the size $fcorresponds to a very are computed, the seXsS is initialized to {C[1], ..., C[m]},
small percentage of the training set (usually, it is some®d the consistent subsef is initialized to the empty set, the
of magnitude smaller). closest elementearest[z] in S of each element in T; is
Communication among the different nodes is efficientlyet to undefined (steps8), and then the iterative part of the
implemented on a parallel environment using the MPI lilesri algorithm starts.
[20] and on a grid computing environment using the mpich-G2 During each iteration, the arrayearest and rep must be
libraries [24]. updated since they represent, respectively, the paiitigoaf
In the following, first of all the two basic PFCNNs stratethe points ofT; into Voronoi cells and the points in the new
gies, that is the PFCNN1 and PFCNN2 rules, are describggt AS.
Then, different variants, namely the PFCNN-t, PFCNN-p, and Let AS be the set of points to be added to the Seturing
PFCNN-b, which further improve time and memory consumphe current iteration (at the first iteration this set coiles
tion of the two basic rules, are introduced. with the class centroids). To update the arrayurest, the
The PFCNN1 rule is now described. For the reader’s cotraining set points in7; — S) are compared with the points
venience, the symbols employed in the sequel of the paper arethe setAS (step 9.(a)). Clearly, it is not necessary to
summarized in Table 1. compare the points if7; — S) with the points inS, since
this comparison was already done in the previous iterations
and nearest neighbors so far computed are currently stored i
3.1 PFCNNZ1rule nearest.
Figure 3 shows the Parallel FCNN1 algorithm. It should be After having computed the closest pointarest[z] in AS
recalled that the PFCNNL rule is the variant of the PFCNM the pointsz in (T; —S), the arrayrep is updated efficiently
rule using the nearest neighbor as representative of thendgor (step 9.(c)) as follows: if the class af is different from the
enemies of a consistent subset element. class ofnearest|z], thenz is misclassified. In this case, if the



Algorithm PFCNNL(; : a training set block)

1) For each clasg = 1,...,m: compute the sums[;] of all the elements of; of the classj, together with their numbeN|j]
2) For each clasg = 1,...,m: s[j] = parallel-sum(s'[j], ..., s”[j]), N[j] = parallel-sum(N'[j], ..., N?[j])

3) For each clasg =1, ..., m: compute the centet[j] = s[j]/N[j]

4) For each clasg = 1,..., m: compute the elemen'[j] in T; of the classj which is closest ta:[;]

5) For each clasg = 1,...,m: C[j] = parallel-min((C" [j], d(c[j], C [j})). - ... (C”[j], d(clj], C"[i])))
6) Initialize the setAS to the set{C[1],...,C[m]|}
7) Initialize the setS to the empty set
8) For each element in T;: setnearest|z] to undefined
9) While the setAS is not empty:
a) For each element in T; — S, and for each elemenj in AS: if the distance betweer andy is less than the distanc
betweenz andnearest[z] then setnearest(z] to y
b) For each elemenj in S: setrep|y] to undefined
c) Foreach elementin T; — S: if the class ofx is different from the class afearest[z] and the distance from to nearest|z]
is less than the distance fronearest|z] to rep[nearest[z]] then setrep[nearest[z]] to
d) Augment the sef with the setAS
e) Foreachy in S, rep[y] = parallel-min({rep' [y}, d(y,rep' [y])), - .., {rep”[y], d(y,rep’[y])))
f) Initialize the setAS to the empty set
g) For each elemenj is S: if reply] is defined then insentep[y] into AS

10) Return the sef

D

Fig. 3. The PFCNNL1 rule.

distance fromnearest[x] to x is less than the distance fromsteps 9(c)-(e) compute the centefs, j] of the points of the

nearest[z] to its current representativep[nearest[x]], then Voronoi cell of y in T w.rt. S having class labei, while

rep[nearest|z]] is set toz. subsequent steps 9(f)-(g) compute the centrdifls j] of the
At the end of each iteration, for eaghin S, the elements points of the Voronoi cell of; in T w.r.t. S having class label

rep'[y] of each node are exploited to find the representative.

of the Voronoi enemies af in the overall training sel” (step Finally, steps 10(h)-(k) set the entriesp[y] of rep to the

9.(e)). Indeed, for each in S, its nearest enemy ifi" w.r.t. centroid amond’[y, 1],..., C[y, m] which is closest ta;, and

S is the closest point among its nearest enemigg[y], ..., then build the new sehS.

repP[p] w.r.t., respectively/lt, ..., T,. This closest point can In the following, three variants of the two above-described
be retrieved efficiently by using the parallel functiparallel- basic rules, namely the PFCNN-t, PFCNN-p, and PFCNN-b
min as shown in Figure 3. rules, are introduced.

Once the true representatives of the Voronoi enemies of
each point in the current consistent subSeare computed, 33 PECNN-t
and stored into the arrayep, the setAS is built with the ™
points stored into the entries of the array. Notice that not If the distance employed satisfies tti@ngle inequality then
all the entries of the arrayep will be defined, since there the number of distances computed by the PFCNN rules can be

might be points inS whose Voronoi cell contains only pointsreéduced. Indeed, since at the beginning of each iteratien th

of the same class. distance from each objegtof T; to its current closest element
nearest[z] in S is known, this information can be exploited
3.2 PFCNN2rule to compare each objeat of 7" with a subset ofAS instead

Figure 4 shows the Parallel FCNN2 algorithm. It should bef the entire se\S, thus saving distance computations. This

recalled that the PEFCNNZ2 rule differs from the PFCNN1 fosubset will be composed only of the elementg\df candidate

the definition of representative of the Voronoi enemies. i@ be closer thamearest[z] to z.

particular, the representative is defined as the closesscla To this aim, for eachy in S, the distances frony to

centroid. the elements ofAS are computed, and then these elements
As for the data structures there employed, the training s¥€ sorted in order of increasing distance frgmThen, the

block T3, the consistent subsét and the arraysearest and €lements of the Voronoi cell of in 7; w.r.t. S, that is the

rep have the same semantics described above. elements: of T; such thatearest[z] = y, are compared with
Steps 1-8 are the same as the PFCNN1 rule, while subte elements in AS having distance frony less than twice
quent step 9 is the main iteration of the algorithm. the distance fromx andy. Indeed, by the triangle inequality,

During each iteration, first of all, each elemenin (T; — they are all and the only elementsA&f candidate to be closer
S) is compared with the elements of AS, and the entry to z thany.
nearest[z] of the arraynearest is updated to contain the Thatis, by using this strategy the generic elemenf T is
element ofS which is closest tar (step 9.(a)). not compared with the elementsof AS such thatd(z,y) >
Once the elements iAS have been compared with all the2d(z,y), wherey = nearest[z]. By the triangle inequality,
elements ifl; — S, the arrayrep can be updated. To this aim,d(z, z) +d(z,y) > d(z,y), thusd(z, z) + d(z, y) > 2d(z, y),



Algorithm PFCNN2(T; : a training set block)
1-8. The same as the PFCNNL1 rule
9. While the setAS is not empty:
a) For each element in T; — S, and for each elementin AS: if the distance between andy is less than the distance from
x to nearest[z] then setnearest[z] to y
b) Augment the sef with the setAS

c) For each elemenj in S, and for each clasg = 1, ..., m: compute the sumy, j] of all the elements: in T; of the class
j such thatnearest[z] = y, together with their numbeN |y, j]

d) For each elementin S, and for each clasg= 1,...,m: s[y, j] = parallel-sum(s*[y, 5], . .., s?[y, §]), Ny, j] = parallel-
SurT1(N1[y7j], MR Np[y7j])

e) For each element in S, and for each clasg = 1,...,m: compute the centetly, j] = s[y, 7]/N|y, 7]

f) For each elemeny in S, and for each clasg = 1,...,m: compute the elemen®[y, j] in T; of the classj such that

nearest[Cly, j]] = y which is closest ta[y, j]

g) For each elemeny in S, and for each clasg = 1,...,m: Cly, ] = parallel-min((C*[y, 5], d(C[y, 5], ¢' [y, 5])), - - -
(CPly, 5], d(C”ly, 4], <’ [y, 5])))

h) Initialize the setAS to the empty set

i) For each elemeny in S: setrep|y] to undefined

j) For each elemeny is S: setreply| to the point amond’[y, 1], ..., C[y, m] which is closest ta,

k) For each elemeny is S: if rep[y] is defined then inserntep[y] into AS

10. Return the sef

Fig. 4. The PFCNN2 rule.

and d(z,z) > d(z,y). Hence, the elements of AS not 3.5 PFCNN-b

compared withr cannot be closer to thany, and computing as noted while describing the PFCNN-t rule, the distances in
the distancel(z, z) has the only effect of wasting time. the setD are not needed together, and, hence, the memory
Notice that this strategy does not need to store together @symption of the PECNN-p rule can be alleviated, even if
the distances in the seéb = {d(y,z) | y € S,z € AS}. gtihe expense ohultiplecommunications. To this purposs,
Indeed, while visiting the Voronoi cell of € S, only the .54 pe partitioned inté,, blocks, named3, .. ., B, , having
distances among and the elements of the sAtS are needed. gj,6 ;. each. Then. the strategy of the PFCNICJ—p rule can
The method obtained by augmenting the PFCNN rule Wi%‘lE apsplied iterativeiy to each blocR,, h = 1.....b,, and
the strategy above depicted is called the PFCNN-t rule. The o eng of each iteration, i.e. after having used them, the
PFCNN1-t and PFCNN2-t rules may reduce the number BIstances{dz'st(y,z) |y € By, z € AS) can be discarded.

distances computed w.rt. the PFCNN1 and PFCNN2 ruleg,e pFcNN-p rule modified as described above is called the
respectively, and thus accelerating their execution tidy- PECNN-b rule.

ever, since the setS andAS are identical in éach node, itis g re 5 shows the computation of the distances between
the case that the same computation, i.e. the calculatioti of @ clements off: and the elements oA S carried out by

the pairwise distapces in the sBt will be carried out in gach the PFCNN-b rule. This pseudo-code must be substituted to
nod_e_. Although thls_stra_\tegy ha_s the a}dvantage of not _W'rstep 9(a) of Figure 3 (Figure 4, resp.) to obtain the PFCNN1-b
additional communications, this replicated computatioaym (PFCNN2-b, resp.) rule. A buffer of sizzh, must be allocated
deteriorate the speed-up of the algorithm. to store both the distances from the elements of the bleck
3.4 PFCNN-p and the elements oAAS, and the identifiers of the elements

of AS sorted according to their distance from each element

The PFCNN-t rules can be scaled-up by parallelizing trlﬁ B;,. The choice of the size of the buffer, and hence of
computation of the distances in the d8tand their sorting. the number of blocks. — 5l is a trade-off between the

To this aim, each nodeé can compute a disjoint subset Ofyem oy consumption, the cost of communication, and the cost

the Idlstances i, sorthth?jm, and then it cacr; gather In h%f computing the distances. Indeed, if the buffer is too $mal
smgecommugma;_on the !staﬂces computell b)ll any Ont ftlen the cost of communication may overwhelm the savings of
node. Once the distances in the detare available to all cpy (ime obtained by exploiting the triangle inequality.eTh

th_e nodes, then each node can compare the elemerifs OEffect of varying the size of the buffer on the two strategies
with the elements ofAS" according to the strategy adoptedy; pe discussed in the experimental results section.
by the PFCNN-t rule. The PFCNN-t rule augmented with the

strategy depicted above is called the PFCNN-p rule. Unlike

the PFCNN-t rule, the PFCNN-p rule stores together aﬂ COST ANALYSIS

the distances in the sab, and, hence, depending on théAnalysis of the complexity of parallel and distributed pragps
characteristics of the dataset, it could require a huge amowmust bear in mind the communication overhead. In fact, even
of memory. As an example, ifS| = 10° and |AS| = 10%, very efficient algorithms in terms of computation can degrad
then D is composed of one thousand million floating poinas the number of processors increase, owing to the unbatanci
numbers. of the ratio communication/computation cost. Thus, in the



1) Partition the elements & into b,, disjoint blocksB, ..., By, having sizeb;
2) Foreachh =1,...,by,:
a) Partition the blockB;, into p disjoint blocks By 1, . . ., Br,, having sizeb, /p
b) For eachy in By, ;, and for eachz in AS: compute the distance betwegrand z
c) For eachy in By ;: sort in increasing order the distances amgnand the elements A S
d) Gather from thep nodes the sorted distances between the elements of the Blpaind the elements chS
e) For eachy in By, and for eachr in T; — S such thatnearest[z] = y:
i) Setctoy
i) For each element in AS such that the distance fromto y is less than twice the distance frogpto «: if the distance
betweenr and z is less than the distance betweerandc then sefc to z
iii) Set nearest[z] to ¢
f) Discard the sorted distances between the elements ofltio& B, and the elements cAS

Fig. 5. The computation of the distances between the elements of 7; and the elements of AS carried out by the
PFCNN-b rule.

following, both the CPU and the communication cost of thihe triangle inequality may reduce the comparisons between
algorithms will be studied, along with the spatial cost of thelements ofl; and elements ofAS. It represents the average

method. fraction of points ofAS compared with each point df;.
Note that the temporal cost of the PFCNN1 and PFCNN2
4.1 Spatial cost strategies is approximately upper bounded B¥. Further-

ore, if the sizen of the consistent subsStis small compared

Space is measured per single node and it is expresse({glqhe sizeN of the overall training sef’, then it is the case

numl_aer of words, Whgre a_word is the number of byte{ﬁatM is negligible w.r.t. Nn. In this case, the temporal cost
required to store a floating p0|r7t number or an integer numb F all the strategies can be approximateds (this is true
It was assumed that each object is encoded as a tupie of s o the worst case, i.e.= 1, of the PFCNN-t). Note that

words, whered — 1 words are employed to store attributgps ¢ost is, in terms of distance computations, the best tha
values, and the remaining word to store the class Iabel.ép%%n be achieved by a parallel algorithm usingodes
complexities are summarized in Table 2. '

The PFCNNL1 requires spac—%ﬁ to store the training set
block T; and spacend to store the consistent subsgt In
addition, spacé’pﬂ is needed to store both the identifier of th&.3 Communication cost
closest elementearest[x] in S of each object: in T; and

the distance from» to nearest[z], while spacen is required D€ notations x ¢ is used to denote the dispatching of
to store both the identifier of the representativgly] of the blocks of data of words each. Table 4 summarizes the com-

Voronoi enemies of each objegin S w.r.t. T; and the distance munication costs of the various methods. See the Appendix

from y to reply]. Thus, the total space required amounts 9" the derivation of the formulas reported in Table 4 and
N or the definition of the cost’y of computing centroids. The
( +n)(d+2) words. for the definit f th s€y of puting troids. Th
The PFCNN2 rule requires, in addition to the PFCNN1 rul€ommunication cost per iteration of the PFCNNL1 rule is
nmd words to store the class centers/centroids of the Voronoi
cells associated with the elementsSn Ci(k) =2nip*1+ Angiid =1
In addition to the basic rule, the PFCNN-t rule requires
space2 maxy {Any } to store distances among a single element

of S andAS, while the PFCNN-p rule spa@max;, {n;Ang } [ Method | Spatial cost |
to store distances among elementsSoand AS. Finally, the PFCNN1 (% +n) (d+2)
P_FCNN—b rule requires a buffer of sizBUF to store the PFCNN1-t (% +n> (d+2) + 2max, {Any}
is:gtances between the current blaBk of elements ofS and PFCNNLp (% n n) (d+2) + 2maxg {nx Ane}
' PFCNN1-b (£ +n)(@+2)+BUF

42 CPU cost PFCNN2 (2 +n)(@+2)+mnd

' _ _ PFCNN2-t (ﬂ I n) (d +2) + mnd + 2 max, {Ang}
The CPU cost is expressed as the number of distance computa F—— N T3 T3 X
tions required by a single node, since the most costly ojerat P (? + "]2 (d+2) + mnd + 2maxy {ng Ang }
performed is the computation of the distance between two | PFCNN2-b (; +"> (d+2) +mnd + BUF
objects.

The analysis of the CPU cost is summarized in Table 3 (the TABLE 2

exact derivation of these formulas is reported in the Append ~ Spatial cost of the PFCNNSs strategies (per node).
where the parameter € (0, 1] takes into account the fact that



[ Method | CPU cost | [ Method | Communication cost |
PECNNL Nint+m) M PFCNN(-t) Co+ 3 Ci(k)
PFCNN1-t NGRID + () PFCNN1-p Co + Z(%kAknk « 14 C1(k))
PFCNN1-p(-b) NG ) + O = k PUATE ()

PFCNN1-b | Co+ Y (BUF *
k

P P BUF
N M
PFCNN2 Notm+ M, PFCNN2(-0) Co+ Y Ca(k)

N b k
(an +m+9  Mp-o) -

PFCNN2-t 5 S PFCNN2-p Co+ Y (2ngAng + 1+ Ca(k))
Nan+tm+t)  M{I-— k
PFCNN2-p(b) | (O™ pm ) (p 4+ nm PFCNN2-b | Co+ S (BUF » 2557 4 0y (k)
k
TABLE 3
. TABLE 4
CPU cost of the PFCNNSs strategies. Total amount of data exchanged by the PFCNNs

strategies.

while the communication cost per iteration of the PFCNN2

rule is If the PFCNN1 and PFCNN2 strategies perform the same

Cy(k) = njdmp * 1 + 2Anj1mp * 1+ Anjyymd 1. number of iterations, then the former should perform better
Indeed, if the communication cost is considered, it is clear

From these formulas it is clear that the PFCNN1 exchang@g§m Table 4 that the PEFCNN1 rule is more advantageous than
considerably less data than the the PFCNNZ2. Indeed, for g8 PFCNN2 rule in terms of amount of data to be exchanged.
of then), objects in the current subsgt UASy, the PECNN1  yowever, it has been observed [3] that the FCNN2 rule always
exchanges only the distances from their nearest enemy Qfinpletes within about ten iterations, since it rapidly ey
each nodep words), whereas the PFCNN2 exchanges regions of the space far from the centroids of the classes,
words. Furthermore, for each of then,,, objects in the set \yhereas the PEFCNN1 rule may require, depending of the
ASk41, the PFCNN1 exchangesword whereas the PFCNN2 characteristics of the data, either approximatively theesa
exchange2mp + md words. number of iterations of the PFCNN2 rule or up to hundreds

In addition, PFCNN-p rule requires an exchangewpf\ni,  of iterations.
distances between the elements Iof and the elements of
AS and the associated identifiers. For PFCNN-b,2hgAn,
words are sent in blocks oBUF words by performing
Znedne communications.

5 RELATED WORK

The literature related to this work can be classified in défe
groups. First of all, there is the literature concerniigssi-
fication methods for large data sefsefer to [16], [21] for
details).
It is worth recalling that the FCNN rule requires approxieigt ~ Severaltraining set condensation algorithnfeve been in-
Nn distance computations, while it has already been noticedduced in the literature [34], [8], [29], that is, inst@rbased
that the temporal cost of all the strategies can be apprdguina[2], lazy [1], memory-based [27], and case-based lear33s [
to A, These methods can be grouped into competence preservation,
Tﬁe methods exploiting the triangle inequality may guaragempetence enhancement, and hybrid approaches. Compe-
tee great savings with respect to this worst case complexignce preservation methods compute a training set consiste
In particular, as noted above, the PFCNN1-t and PFCNN&ubset removing superfluous instances that will not affect
t methods require the same communications of the PFCNMie classification accuracy. Competence enhancement deetho
and PFCNN2 methods, respectively. aim at removing noisy instances in order to increase acgurac
However, if the consistent subset becomes large, and hehtydrid methods search for a subset that, simultaneously,
the parametel/ becomes significant, their performance couldchieves both noisy and superfluous instances elimination.
deteriorate since each node has to computelistances. The concept of atraining set consistent subset for the
On the contrary, The PFCNN1-p(-b) and PFCNN2-p@earest neighbor rulavas introduced by [22] together with
b) rules present a negligible overhead with respect to the algorithm, called the CNN rule (for Condensed Nearest
PFCNN1 and PFCNN2 methods, respectively, yet their speleighbor rule), to determine a consistent subset of theraig
up in terms of computed distances is almost equal to tkemple set. The CNN is order dependent, that is, it has
number of nodep (note that, from a theoretical point of view,the undesirable property that the consistent subset depend
by parallelizing the computation carried out in step 9(j) obn the order in which the data is processed. Thus, multiple
Figure 4, the costnn to be paid by the PFCNN2 rule can beruns of the method over randomly permuted versions of the
broken down to%; it was preferred not to parallelize thisoriginal training set should be executed in order to deteemi
step as CPU computation savings do not offset the additiolaé quality of its output [4]. The MCNN rule (for Modified
communication overhead). CNN rule) [13] computes a training set consistent subset in

4.4 Discussion



Checkerboard dataset, FCNN2 method (1M, 10M, 20M, 50M) ¢ dataset, FCNN2 method (1M, 10M, 20M, 50M)

an incremental manner. Unlike the CNN rule, the MCNP = 800
rule is order independent, that is, it always returns theesar 7000
consistent subset independently of the order in which tha di» ™ o *
is processed. However, the method could require a lot 5
iterations to converge. In order to compute a small constiste

£ 4000

Size of the setA S
=
S
3
of tl

2 3000

subsetS of the training setl’, [23] proposed the algorithm = s 7 2000
NNSRM (for Structural Risk Minimization using the NN rule). 1000
Nevertheless, its time complexity is quite high{|T'|*). The o a0 o o e 0 w95 w0 G oa m @

RNN rule [19], for Reduced NN rule, is a post-processing
step that can be applied to any other competence preservatio
method. Experiments have shown that this rule yields atbjighFig. 6. Checkerboard dataset: size of AS vs the iteration
smaller subset than the CNN rule, but it is costly. Methodwmber (note the vast difference in the horizontal and
previously discussed compute a training set consistersesubvertical scales).
in an incremental or decremental manner and have polynomial
execution time requirements. The MCS rule [11], for Minimal
Consistent Subset, aims at computing a minimum cardinalityopose to use an ensemble of multiple approximate (weak)
training set consistent subset (an NP-hard task, see [33arest neighbor classifiers to speed-up classificatioa. tim
The algorithm, based on the computation of the so-calledin [35] a modulark-nearest neighbor classification method
nearest unlike neighbors [12], is quite complex. Furtheamo for massively parallel text categorization is presentede T
counterexamples have been found to the conjecture thatritethod decomposes the overall problem into a number of
computes a minimum cardinality subset. Approximate ogmaller two-class base subproblems and finally combinés the
timization methods, such as tabu search, gradient desceniiputs by means of a Min-Max Modular neural network
evolutionary learning, and others, have been used to camppiodel [26]. This approach has some relationship with the
subsets close to the minimum cardinality one [25]. Both tfRound Robin classification, which transformsnaclass prob-
MCS and these algorithms can be applied in a reasonaldm into O(m?) two-class base subproblems [17].
amount of time only to a small or medium sized data set.  |f each base classifier can be allocated on a different pro-
Itis the case to recall here that, to the best of our knowledgg:ssor, since a grid or a large-scale cluster system isainajl
no distributed method for computing a training set consistethen the speed up achievable by all the above mentioned
subset for the nearest neighbor rule has been presentegnéithods is equal to the number of base classifiers, otherwise
literature. This may be due to the fact that methods other thge speed up is equal to the number of available processor.
the FCNN rule seem to have a structure which is not very |t is important to point out that also ensemble and decompo-
parallelizable, basically since operations executedndueach sition methods are complementary w.r.t. the task of coridgns
iteration must be necessarily executed in sequence, widle ethe training set, since they can be used on condensed tainin
iteration of the FCNN rule can be parallelized very efficignt sets to obtain a better classifier or to further speed up resspo
Finally, we mention two categories of methods which argme. Indeed, while the goal of condensation algorithms is
complementary to the task here considered. to reduce the size of the stored data maintaining the same
The first category concerns methods $peeding-up nearest ¢|assification accuracy as the original training set, thal gé
neighbor searclf10], [18], [7], which may alleviate the cost of ysing multiple classifiers is to improve classification aacy
searching for the nearest neighbor of a query point. Bagicakime and/or elaboration time. Again, both spatial and terapo
the goal of these methods is to provide a data structuren ofigsts of ensemble/decomposition methods depend on the size
called index or tree, storing the data set, which is able tf the data set, and using a consistent subset instead of

speed up search for nearest neighbors during classificatigfe whole training set greatly reduces their computational
These methods are complementary to the task here considgegflirements.

since indexes can be profitably used at classification time to

speed up nearest neighbor search either in the originalriai

set or in a consistent subset of it. In particular, both shatis ExpERIMENTS

and temporal costs of index structures depend on the size of

the data set. Thus, using a consistent subset instead of Mflethe experiments were performed on a Linux cluster with

whole training set is advantageous from the point of view df6 Itanium21.4GHz nodes each having 2 GBytes of main

computational resources to be employed. memory and connected by a Myrinet high performance net-
The second category concerns methods for improving clagerk.

sification accuracy or response time through the usaufiple The experiments are organized as follows. First of all, in

nearest neighbor classifiers order to compare the behavior of the different strategies, a
In [4] it is proposed a method to train multiple condensef@dmily of synthetically generated training sets was coaisd.

nearest neighbor classifiers on smaller training sets atak& Then, the methods were tested on three large high dimersiona

a vote over them. In [5], [6] the MFS algorithm is describedeal datasets. Finally, the accuracy of the PFCNN rule is

combining multiple nearest neighbor classifiers, eachgusinompared with the accuracy of the nearest neighbor rule on

only a random subset of the features. In [31] the authoseme difficult classification tasks.

(a) PFCNN1 (b) PFCNN2



Checkerboard 1M points (12 MBytes) Checkerboard 10M points (120 MBytes)

1 1 (@) 1 million of points
—o— PFCNN1 —o— PFCNN1
-o- PFCNN1-t -o- PFCNN1-t P Seq 2 4 8 16
o PCFNN1-| _ -
ol S PeNa P ol o PN P PFCNNLI | 379.6 | 189.9 | 95.1 | 47.6 | 24.1
-A- PFCNN2-t . -A- PFCNN2-t PFCNN1-t | 122.0 | 62.2 324 | 18.0 | 11.7
g |4 PCFNN2p T g LA PCRNNZp 3 PFCNN1-p | - 69.7 | 339 | 166 | 89
38 o 38 . ; PFCNN2 | 493.5 | 246.8 | 1235 | 61.9 | 311
& oo L& ° PFCNN2t | 545 | 305 | 185 | 123 | 96
. e . e PFCNN2-p | - 315 | 162 | 87 | 54
(b) 10 millions of points
% 4 8 12 16 % 4 8 12 16 Seq. 2 4 8 16
Number of processors Number of processors PFCNNl 7765 3861 1932 967 483
(@) (b) PFCNN1-t | 3171 | 1593 | 789 | 409 | 221
PFCNN1-p | - 1806 | 889 | 449 | 231
Checkerboard 20M points (240 MBytes) Checkerboard 50M points (572 MBytes) PFCNN2 15474 7717 3890 1944 977
10— Pronmt 10— Pronmt A PFCNN2-t | 900 | 487 | 287 | 183 | 135
-©- PFCNNI1-t -©- PFCNN1-t -
o PCFNNLp o PEENNI . PFCNN2-p | - 567 | 308 | 166 | 95
12} =&~ PCFNN2 12} —A~ PCFNN2 /7
. N PorNNa - N PerNa \ (c) 20 millions of points
g g et Seq 2 4 8 16
5 e I Wt N - © T PFCNNI | 33646 | 168265 | 8426 | 4217 | 2137
T A A PFCNN1-t | 9374 | 4729 | 2359 | 1239 | 695
4 4 A PFCNN1-p | - 5486 | 2700 | 1366 | 716
PFCNN2 | 43823 | 21912 | 10983 | 5474 | 2781
0 0 PFCNN2-t | 2193 | 1199 671 | 422 | 308
0 IN 8 % 0 4 8 16 PFCNN2-p | - 1484 753 | 398 | 226
umber of processors Number of processors
(© (d) (d) 50 millions of points
. Seq 2 4 8 16
Fig. 7. Checkerboard dataset: speedup. PFCNNI1 | 134457 | 67229 | 33658 | 16840 | 8435
PFCNN1-t | 39793 | 19897 | 9658 | 4979 | 2737
PFCNN1-p - 23156 | 11155 | 5624 | 2940
PFCNN2 | 172799 | 86396 | 43201 | 21724 | 11161
6.1 Synthetic datasets PFCNN2-t | 8253 | 4129 | 2204 | 1489 | 991
] ) PFCNN2-p - 5386 | 2640 | 1411 | 838
A family of synthetic datasets, calldfheckerboarddatasets,
was considered. Each dataset of the family is composed of two TABLE 5

dimensional points into the unit square 44 4 checkerboard,
ideally drawn onto the unit square, partitions the points in
two classes associated with the white and black cells of the
board. Data sets composed of one million points (each pgint i
encoded with three words, two representing point coordmat o
and the last one representing the class label, for a total B¢ PFCNN2-p outperforms the PFCNN2-t. This is due to
11MB), ten million (114MB), twenty million (229MB), and the parallelization of the ccomparison among the glements of
fifty million points (573MB) are taken into account. S and AS as explained in Section 4. The same is not true

In order to evaluate the scalability of the algorithms thfor the PFCNN1-t and PFCNN1-p that require almost the
largely used speedup parallel metric was employed.TLgf Same amount of time (_except for the smallest dataset, Whgre
denote the execution time of the sequential algorithm, affe€ PFCNN1-p is sensibly better than the PFCNN1-t). This
let T, denote the execution time of the parallel algorithm oR€havior is due to the fact that the size &F' is small over

p processors. Then thepeedupS.,(p) on p processors is all the iterations and distance computation savings do not
defined asS,,(p) = Tica If the algorithm scales ideally its offset the additional communication overhead to be paid by

T the PFCNN1-p. Except for the PFCNN2 basic strategy, the

speedups,, is p for all values ofp. . .
pThe a?r?azlj;gi)s ofpthe curse of theZ;ize of the Ast and of other PFCNNZ2 strategies scale worse than the corresponding
PFCNN1 strategies.

the number of iterations of the different strategies, reggbn
Figure 6, is the starting point, since, as pointed out inisect ~ Since on average the sétS computed by the PFCNN2

4 (see Tables 2, 3, and 4), the course/x§ is fundamental is much larger than the same set computed by the PFCNNZ1,
to the understanding of the execution time, scalabilityd art was expected that the triangle inequality guaranteeatgre
memory usage. In the PFCNN1 case, the number of iteraticiy/ings on the PFCNN2 rule, and hence that the PFCNN2-t
increases from about one hundred, for one million points, &d PFCNN2-p strategies are faster than the PFCNN1-t and
about one thousand, for fifty million points, while the peaRFCNN1-p strategies, respectively. This behavior is coved

of |AS| remains almost the same. As for the PFCNN2, ddy the execution time reported in Table 5. The same behavior
the contrary the number of iterations remains almost idahti cannot be observed on the PFCNN1 and PFCNNZ2. It can be

regardless of the dataset size, while the peal\f| increases concluded that, without the time savings guaranteed by the
sensibly. triangle inequality, the PFCNNZ2 is slower than the PFCNN1.
Consider the speedup curves of Figure 7. It is worth noticing Figure 8 shows the size of the consistent subset computed
that the PFCNN1 and PFCNN2 scale almost linearly. Thigrsus the dataset size. It can be observed that the PFCNN1
confirms that the parallelization is very efficient. As foethalgorithm guarantees a higher compression ratio than the
triangle inequality based strategies, for all the dataemtss PFCNN2, even if the former takes more time than the latter

Checkerboard: execution time.
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Block strategy PFCNN1 (50M tuples) Block strategy PFCNN2 (50M tuples)

when the triangle inequality is exploited. 2050 1050

o eazviva] N & = Proanzb
M 10M 20M 50M 050
FCNN-Seq | 19 (19) | 191 (191) | 382 (382)| 954 (954) g2 g
PFCNN1-t | 1 (1) 12 (12) | 24 (24) 60 (60) 5 s0u 5%
PFCNN1-p| 3(2) 15 (13) | 35 (28) 75 (66) goeso )
PFCNN2 1(1) 13 (13) | 25 (25) 61 (61) @ 2942 8 o
PFCNN2-t | 1 (1) 13 (13) | 25 (25) 61 (61) soa0
PFCNN2-p| 35 (8) | 362 (73) | 682 (141) | 1788 (353) 0
29383816 o . Mbytes) 128 03816 o 64 (Mbytes) 128
TABLE 6 imension of Buffer ytes, imension of Buffer ytes,
) . . b
Checkboard dataset: maximum (average in parenthesis) @ ®)
memory usage per node (MBytes) with p = 16. Fig. 9. Checkboard dataset: execution time vs buffer

dimension.

Table 6, shows the memory usage per node assuming that
16 nodes are used. Interestingly, memory becomes critictdtaset.
only for the PFCNN2-p and when the dataset consists of 50The MIT Face detection dataset is an extended version of
millions of points. In fact, as memory depends on the facttiie MIT face database, built by adding to the original datase
|S]-]AS|, the strategy reaches a peak of 1788MB of memoboth novel non face image examples and face image examples
usage during thé&9th iteration (see Figure 6(b)). obtained applying various image transformations to thedac

Thus, this strategy is not practicable on larger dataseffseady present, as described in [30]. The dataset is catpos
on the employed architecture. In any case, the PFCNN2sb471,914 objects of the classon face(the 96.43% of the
strategy can be used. Figure 9 shows the execution timetofal) and17,496 of the classface (3.57% of the total), each
the PFCNN1-b and PFCNN2-b strategies versus the diméraving361 features, for a total 089,410 objects (676 MB).
sion BUF of the buffer on the data set composed of 50 The Defense Advanced Research Projects Agency 1998
millions points. In general, if the buffer is too small, thenntrusion detection evaluation data ‘sensists of network
the communication cost outweighs the advantages of a beittfusions simulated in a military network environment.eTh
usage of the memory. Nonetheless, as soon as theizE TCP connections have been elaborated to construct a data set
of the buffer becomes sufficiently large, i.e. at least 16MBf 23 features, one of which identifies the kind of attack:
in the case considered, then the PFCNN1-b and PFCNN2bS R2L, U2R, andPROBING The TCP connections from 5
strategies reach their best behavior. In particular, teNA¥1-  weeks of training data were used. The data set is composed of
b exhibits the same execution time of the PFCNN1-p, sin@gs,301 objects (42MB) partitioned into two classamrmal
the buffer is sufficient to store all the distances between thepresenting normal data6,320 objects), andattack asso-
elements ofS and the elements oAS, the latter set being ciated with the different types of attack,81 objects).
very small. Surprisingly, the PFCNN2-b performs bettemtha The Forest Cover Type datadebmprises data representing
the PFCNN2-p. This can be explained since the overhead dggest cover types from cartographic variables determined
to additional communications is offset by the efficient meyno from US Forest Service and from US Geological Survey.

usage. As a result, the PFCNN2-b strategy terminates intabfiuis composed by495,141 tuples each having4 features
750 seconds, which is the fastest time scored on this dataged4MB), partitioned in two classes.

with a buffer of 16MB and a total memory usage of 67MB. Figure 10 shows the curse of the size &f versus the
iteration number of the PFCNN1 and PFCNN2 for the three

6.2 Real life datasets above described datasets. Note that for the first two dattset
Three real datasets were considered, namel§stended MIT behavior of the two rules is very similar. Indeed, they perfo
Face dataset, theDARPA 1998and theForest Cover Type almostthe same number of iterations and reach a peak of about
the same size, event though on the DARPA 1998 the PFCNN2
required less iterations and presents a peak higher than tha

‘ of the PFCNNL1. On the other hand, on the Forest Cover Type
- iiﬁﬁﬁé dataset, PFCNN1 performs less than half as many iterations

and reaches a peak that is about three times as large as the

peak reached by the other rule. This will affect scalab#ityl
execution time, as shown in the following.

x 10*

Checkerboard dataset

(o2}

o

N

6.2.1 MIT Face

Experimental results concerning the MIT Face dataset are
shown in Table 7. Note that in the sequential scenario, the
5 PFCNN2 performs better than the PFCNN1 and also that

2 3 4
Dataset size, |T| v 10’

N

Consistent subset size, |S|
w

[

OQ
[

. . . . 1. http://ww.ll.mnit.edu/lST/ideval/index.htm
Flg- 8. Checkerboard dataset: consistent subset size. 2.http://kdd.ics.uci.edu/ dat abases/ covertype/ covertype. ht m
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Face dataset, PFCNN1 and PECNN2 methods (a) Execution time vs number of nodes

200 ‘ | [ Seq | 2 ] 4] 8] 16
PFCNN1

PFCNN1 823.0 | 411.67 | 204.45 | 103.24 | 53.00

150 PFCNN1-t | 781.1 | 390.88 | 195.94 | 101.02 | 55.01

PFCNN1-p — | 415.32 | 206.03 | 104.56 | 53.60

PFCNN2 770.9 | 385.82 | 203.03 | 114.62 | 79.77

PFCNN2-t | 725.0 | 362.07 | 191.86 | 110.35 | 79.41

Size of the setA S
=
o
o

PFCNN2-p — | 379.89 | 198.93 | 111.79 | 78.22
(b) Speedup
50
| [ 2] 4] 8] 16]

PFCNN1 2.00 | 403 | 7.97 | 1553
00 20 20 m 50 100 PFCNN1-t 2.00 | 399 | 7.73 | 14.20
teration number PFCNN1-p | 1.88 | 3.79 | 7.47 | 14.57
PFCNN2 2.00 | 3.80 | 6.73 9.66
(a) PFCNN2-t 2.00 | 3.78 | 6.57 9.13
PFCNN2-p | 1.91 | 3.64 | 6.49 9.27

DARPA 1998 dataset, PFCNN1 and PFCNN2 methods

1o PFCNNL (c) Memory usagep = 16 (MBytes)
120 \ﬂ[ Sequential Parallel
Max | Avg Max | Avg
»100 PFCNN1 684 | 684 | 47 | 47
3 PFCNN1-t | - - 47 47
% 80 PFCNN1-p | - - | 49 | 48
£ PFCNN2 693 | 691 | 56 | 53
% 60 PFCNN2-t | - - 56 | 53
8 PFCNN2-p | - - 56 54
» 40
20
TABLE 7
% 5 10 15 20 25 30 MIT Face dataset: experimental results.
Iteration number

(b)

Covtype dataset, PFCNN1 and PFCNN2 methods
000

~ PFCNN1 78 iterations, a subset composed by a totaBaf65 objects
0000 (0.65% of the whole training set) of whicR,918 are of the

< 5000 classnon-face(0.62% of the class objects), an247 of the
24000 classface (1.41% of the class objects).
%5 3000 Using a ten-fold cross validation, the PFCNN1 obtained an
& 2000 accuracy 0f99.92% on the classnon-faceand an accuracy
1000 . of 99.96 on the clasdace for a total accuracy 009.92%,
0 while the PFCNN2 obtained an accuracy 9$.49% on the
0 0 atond ber 8 classnon faceand an accuracy a9.73% on the clasdace
© for a total accuracy 009.50%. This result is comparable to

that obtained by the CNND0.53%) and the MCNN ©9.45%)
Fig. 10. Size of AS for the MIT Face, DARPA 1998 and methods [22], [13]. To have an idea of the improvement of
Forest Cover Type datasets. the PFCNN algorithms, compare their execution time with the
35,283 seconds employed by the CNN rule and #e102
seconds employed by the MCNN rule to complete the training
the triangle inequality further reduces the execution timghase on the MIT Face dataset.
Nevertheless, as the number of processors increases, while
the speedup of the PFCNNL1 is excellent, the speedup of h@.2 DARPA 1998

PFCNNZ2 deteriorates, and, as a result, the PFCNNL1 is fasfable 8 reports the experimental results of the DARPA 1998
if all the 16 nodes are employed, even though in all cases thgtaset. It can be observed that the sequential executierigi
algorithms terminates in about one minute. It is inter@stiyery small and almost the same for all the strategies. Ao, t
to understand the reason why the speedup of the PFCNM2thods scale very well and the parallel execution timé®n
deteriorates. It was verified that this behavior is assediatith nodes reduces to less then three seconds in all cases. @nly th
a high communication overhead, exhibited in corresponeleneFCNN2-p does not scale so well. This can be explained by
to data exchanged in step 9(d) of Figure 4, due the very higBticing that the CPU cost is very small and hence even few
dimensionality of the dataset. Maximum and average memaijid small-sized additional communications may detemorat
usage is good for all the strategies since the peak\sf| is  the total execution time. Maximum and average memory usage
very small. are low owing to the small average value [@&fS|. On this

On this dataset, the PFCNN1 computed, afkiterations, dataset, the PFCNN1 computed, afiér iterations, a subset
a subset composed of a total 8f362 objects (.69% of composed of a total oB54 objects (0.19% of the whole
the whole training set) of whicl3,108 are of the classion training set) of which238 are attacks 12.01% of the class
face (0.66% of the class objects), anzb4 of the classface objects), and16 normal data@.13% of the class objects). The
(1.45% of the class objects). The PFCNN2 computed, aftefFCNN2 computed, aftex iterations, a subset composed of a
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(a) Execution time vs number of nodes (a) Execution time vs number of nodes
| [ Seq] 2] 4] 8] 16] | [ Seq] 2] 4] 8] 16]
PFCNN1 38.06 | 19.02 9.60 | 4.85 | 2.45 PFCNN1 45222 | 226.26 | 113.29 | 56.55 | 30.92
PFCNN1-t | 35.66 | 18.16 9.05 | 4.48 | 2.23 PFCNN1-t | 235.42 | 126.93 72.50 | 45.32 | 32.62
PFCNN1-p — | 23.99 | 10.27 | 5.08 | 2.53 PFCNN1-p — | 145.23 | 84.20 | 44.71 | 24.18
PFCNN2 41.87 | 21.00 | 1057 | 535 | 2.78 PFCNN2 469.89 | 23558 | 120.36 | 64.67 | 43.97
PFCNN2-t | 34.49 | 17.57 8.83 | 432 | 2.29 PFCNN2-t 63.36 41.18 31.75 | 26.34 | 27.08
PFCNN2-p — | 2254 | 1127 | 549 | 2.83 PFCNN2-p - 42.65 23.93 | 14.15| 10.48
(b) Speedup (b) Speedup
| [ 2] 4] 8] 16] | [ 2] 4] 8] 16]
PFCNN1 2.00 | 396 | 7.84 | 1554 PFCNN1 2.00 | 3.99 | 8.00 | 14.63
PFCNN1-t | 1.96 | 3.94 | 7.96 | 15.98 PFCNN1-t | 1.85 | 3.25 | 5.19 7.22
PFCNN1-p | 1.49 | 3.47 | 7.02 | 14.10 PFCNN1-p | 1.62 | 2.80 | 5.27 9.74
PFCNN2 1.99 | 3.96 | 7.83 | 15.05 PFCNN2 1.99 | 3.90 | 7.27 | 10.69
PFCNN2-t | 1.96 | 3.91 | 7.98 | 15.07 PFCNN2-t | 1.54 | 2.00 | 2.40 | 2.34
PFCNN2-p | 1.53 | 3.06 | 6.28 | 12.17 PFCNN2-p | 1.49 | 2.65 | 4.48 6.05
(c) Memory usagep = 16 (MBytes) (c) Memory usagep = 16 (MBytes)
Sequential Parallel Sequential Parallel
Max | Avg Max | Avg Max Avg Max Avg
PFCNN1 486 | 486 | 31 | 31 PFCNNT 1163 | 116.3| 154 15.4
PFCNN1-t - - 31 | 31 PFCNN1-t - - 15.4 15.4
PFCNN1-p - - 3.4 3.2 PFCNN1-p - - 302.1 93.6
PFCNN2 48.8 | 48.7 3.3 3.2 PFCNN2 133.9 | 124.3 32.9 23.3
PFCNN2-t - - 33 | 32 PFCNN2-t - - 329 23.3
PFCNN2-p | - - 38 | 33 PFCNN2-p | - - 1166.0 | 222.2
TABLE 8 TABLE 9
DARPA 1998 dataset: experimental results. Forest Cover Type dataset: experimental results.

total of 926 objects (.20% of the whole training set) of which 6-3 Comparison with the Nearest Neighbor Rule

246 are attacks12.42% of class objects), ané80 normal data In order to validate effectiveness of the PFCNN rule, it is of

(0.15% of the class objects). interest to compare the accuracy of the PFCNN rule with the
Finally, using a ten-fold cross validation, the PFCNN#&ccuracy of the nearest neighbor classifier using the whole

obtained an accuracy @.99% on the classmormal and an training set as reference set during classification.

accuracy 0f93.83 on the classattack for a total accuracy of ~ To this aim, the originaMit Face® data set and th&DD

99.96%, while the PECNN2 obtained an accuracy9sf96% CUP 1999 data set were considered. These data sets rep-

on the classiormal and an accuracy d2.23% on the class resent two difficult classification tasks, since the clagmlla

attack for a total accuracy 099.50%. distribution of the training set is rather different fromethlass
label distribution of the data set. The class label distiiu
6.2.3 Forest Cover Type of these data sets is reported in Table 10. In particular, the

. . column TRAIN reports the number of objects composing
Table 9 reports the experimental results concerning thedtor -
he training set, the column TEST reports the number of
Cover Type dataset. All the PFCNN rules are very fast, . X
. . o objects composing the test set, the column PFCNNL1 reports
But, even if the PFCNN1 basic strategy exhibits, as usugl, number of obiects composing the PECNNL condensed
an excellent speedup, it must be said that the speedup u ) posing .
. . et, and the column PFCNN2 reports the number of objects
PFCNN on this dataset is worse than that observed on f{ € posing the PECNN2 condensed set
other datasets. This is especially evident for the PFCNNZ™MP 9 )

strategies, due to the large siz@| of the setD composed of The experiments pointed out the very good classification

the pairwise distances among elements of the current Sub%%(iuracy associated with the PFCNN subset compared to the

S and elements of the current incremental subsét Recall assification associated with the whole training set. lct,fa
. . . the classification accuracy of the nearest neighbor rulegusi
Fhat in the PF.CNN't strategy_the computation of the dBtanCﬁHe whole training set as reference set @a43% and92.06%
Qa;r;riusritvgldz ansc;turzaerdalﬂl;;lgfi aﬁzu?l g(])%tgrogé :2? t)hefor the MIT FaceandKDD CUP 1999data sets, respectively,
OO (S,B00, TESP-) \\hile the classification accuracy achieved by the PFCNN1
for PFCNN1 (PFCNNZ2, resp.) rule. As a direct consequen FCNN2) rule on these two data sets was, respectively
the PFCNNp strategies waste a lot of memory. Obviousl ' '

the use of the PFCNN-strategies would improve the usage93'43% (93.48%) and92.02% (91.97%).

of memory. 6.4 Discussion
The PFCNN1 computed a subset composed of a total

of 39,799 objects 8.04% of the whole training set), while Now, let us briefly point out the strengths and weakness of
PFCNN2 computed a subset composed4afi64 objects the different strategies, based on the experimental seanl
(8.31%). Using a ten-fold cross validation, the PFCNN1 anfOmplexity analysis.

PFCNN2 obtained an accuracy respeCtively%f98% and 3.http://cbcl.nit.edu/ software-datasets/ FaceDat a2. ht m

99.96%. 4. http://kdd.ics. uci.edu/ dat abases/ kddcup99/ kddcup99. ht m
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MIT Face . . .
[ CLASS [ TRAIN | TEST | PFCNNI| PFCNNZ | 361-dimensional objects. The subset computed on the latter
‘ Faces H 2,429 ‘ a72 ‘ 84 ‘ 80 ‘ dataset was composed by th&9% of the whole training set
Non-faces|| 4,548 | 23,573 338 296 and exhibited9.92% accuracy.
KDD CUP 1999
[ CLASS [ TRAIN [  TEST | PFCNNI| PFCNNZ]
Normal 97,277 60,593 401 477 REFERENCES
Prob 4,107 4,166 206 253 N o . e
D’;’Se 391,458 | 229,853 258 369 [1] D.W. Aha. Editorial, special ai review issue on lazy igiag. Artificial
U2R 59 298 27 27 Intelligence Reviewl1(1-5):7-10, 1997.
R2L 1,126 16,189 60 64 [2] D.W. Aha, D. Kibler, and M.K. Albert. Instance-based fieimg algo-
rithms. Machine Learning 6:37—66, 1991.
TABLE 10 [3] F. Angiulli. Fast condensend nearest neighbor rulePioc. of the 22nd
s International Conference on Machine Learnjrigionn, Germany.
Class label distribution of the data sets used to compare 4] E. Aplaydin. Voting over multiple condensed nearestgheirs. Artifi-
accuracy of the NN and PFCNN rules. cial Intelligence Review11:115-132, 1997.
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The PFCNNL1 presents a very low communication overhead.
The same holds for the PFCNN2 provided that the data [@
not very high dimensional. They scale almost linearly and
are suitable to massively parallel machines and to digtibu [8]
environments such as computational grids. The PFCNN2s
strategies may be faster than the PFCNN1s, but the latter [g]-
ways scale better than the former and they are preferabla whe
the dataset is very high dimensional. The triangle ineq,uali[
based strategies (PFCNN-t, PFCNN-p, and PFCNN-b) redycg
execution time, even if they may scale worse than the basic
PFCNN. The PFCNN-t is advantageous in grid environmen&z]
in which communication is costly. The PFCNN-p is preferable
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7 CONCLUSIONS [17]

A distributed algorithm for computing a consistent subdet o [18]
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. N . 7]
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the valuec’” = min{c',..., ¢’} sends the vector’ to all
APPENDIX the other nodes. Thus, it is the size of each?, then this

o . function exchange8p x 1 + d * 1 data. Furthermore, it must
Derivation of the CPU cost.The CPU cost is expressed as thgg g4ig that if a parallel function is invoked multiple times

number of distance computations required by a single nogle, cycle on the elements of an array, in order to reduce
since the most costly operation performed is the computatigye nymber of communications and consequently the start-
of the distance between two objects. up latency, which in a distributed environment may be very
First of all, note that7;|m distances are needed by everyysistent, the code is optimized so that all the data ilv
method to find the centroids Of each CI"’_‘SS' ) in the various communications is sent together.
As for the PFCNNL1 rule, during each iteration the eIementsThus, if the size of the array i, then theparallel-sum

of T3 — (Sk i T;) are compared with the elements |a¥5y,|. exchanges.dp 1 data, while theparallel-min exchanges
Thus, the distances computed d#&|m + >, (|7i] — [Sk N 9Lp+1+ Ld«1 data

?i|)||A‘ik|' Assu;nlngdthart] the e:sment;@fj\rfk p[[(;]lfe? ug|- Now the communication costs of the various methods are
ormly from each node, hence th, NTi| = p o IS leads provided. To compute class centroids (Figure 4: steps he) t

to a total temporal COSW - nodes send the following data:
As far as the PFCNN1-t rule is concerned, dete (0, 1]
be the average fraction of points &fS compared with each Co=mdp*1+2mpx1+m(d—1)*1

point of T;. The parametet takes into account the fact that
the triangle inequality may reduce the effective number
comparisons between elements Bf and elements ofAS.

Then, during each iteration the elementsIpf (S, N7T;) are
compared witha|AS;| elements ofAS);. Moreover, during
each iteration the distances between the elements, aind . ; ;
the elements oA S, are computed. Summing up, the temporaﬁlass’ computed by employing tiparallel-min function.

cost is| T3 m+ 5, [(|T3] — |15k N T3 )a| ASk | + Sk || AS. ]|, that . As far as the PFCNNL rule is concerned, during each
is Nantm) | M(p=a) iteration it executes @arallel-min function to determine the

Conzéider now Zihe PFCNN1-p rule. This time each no*ﬁeeage;;esneenTyeorfiteear(;ftlioerﬁrsr?ent&b AS (step 9(e)). Thus,
computes only al fraction of the distances betweeSy, P '

here the termmdp x 1 concerns the sum of the elements of
each class7(d — 1) words) plus the count of the elements
(m words), which must be multiplied for the number of nodes,
computed by employing thearallel-sum function, while the
term 2mp x 1 + m(d — 1) = 1 concerns the centroids of each

and 2o ThUS,SthESdistances afe;|m + Zk[(gﬂ A Ci(k) =2npp* 1+ Angiid =1
Ti)a|AS,| + ZEIASl] - which simplifies to 2lentm) _ | |
M(1—a) ’ ? Note that only the representative of the Voronoi enemies of

As PECNN2 rules, in order to compute the representatl\t/%e.vorom cells containing at least a Voronoi enemy are sent

; . . during the second phase of tharallel-min. Thus the overall
of the \oronoi enemies of the points &1 U ASk., these 1ules coo o yne pECNN (and also of the PFCNNI-1) ruleis+
require, in the worst case, to compute the distances between C1 (k) communications
each element of; — (S, NT;) and the geometrical center of~—F 1( )

the elements of its Voronoi cell having the same class Iabel,In adqmon, PFCNNL-p rule requires to exchange the
and then the distances between each elemerft,ofnd the ni.An;, distances between the elementdpfaind the elements

class label centroids of its Voronoi cell. pf AS and the associated identifiers, and hence the total cost

Thus, the time complexity of the FCNN2 rules can be of %0 ‘5 ZA,C(anA%k * 1+ Olt(/_ﬂ))bllnskteﬁ(l%[j%r PFENEL
tained by adding to the cost of the corresponding PFCNNL rulé f € 2tk QZ’zAVYL(;r S are sen t'm OI(—:| S th vtvotr IS yt :
the following number of distance computations,, [(|T;] — gerfrm'rzg BUF foAmmunécal'T;U;”C‘;kASk )0 al cost is
Sk VT + [Sel(m = D] = [T S0 = 3, % + (m = OF Zarip et Ao BUE
1 Nt ptly « Nt P 0 Consider now the PFCNN2 rule. During each iteration it
)2 =5 n(m = B) < 5 +nm. executes two calls to parallel functions. In particulartada
Derivation of the communication cost. The parallel-sum n)dmp = 1 is exchanged by thparallel-sum of step 9(d) of

and parallel-min methods are efficiently implemented on d&igure 4 to compute class centers of the Voronoi cells, while




data2n;mp*1+n,mdx*1 is exchanged by thparallel-min
of step 9(g) to compute class centroids of the Voronoi cells.
Summarizing, the data exchanged during each iteration is:

Co(k) = nhdmp * 1+ 2Angymp x 1 + Angymd + 1.

As for the different PFCNN2 strategies, their cost can be
obtained analogously to that of the corresponding PFCNN1
Strategy. (Il

15



