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Distributed Nearest Neighbor Based
Condensation of Very Large Datasets

Fabrizio Angiulli and Gianluigi Folino

Abstract—In this work, PFCNN, a distributed method for computing a consistent subset of very large data set for the nearest neighbor
classification rule is presented. In order to cope with the communication overhead typical of distributed environments and to reduce
memory requirements, different variants of the basic PFCNN method are introduced. An analysis of spatial cost, CPU cost, and
communication overhead is accomplished for all the algorithms. Experimental results, performed on both synthetic and real very large
data sets, revealed that these methods can be profitably applied to enormous collections of data. Indeed, they scale-up well and are
efficient in memory consumption, confirming the theoretical analysis, and achieve noticeable data reduction and good classification
accuracy. To the best of our knowledge, this is the first distributed algorithm for computing a training set consistent subset for the
nearest neighbor rule.

Index Terms—classification, parallel and distributed algorithms, nearest neighbor rule, data condensation.

✦

1 INTRODUCTION

Even though data collecting capabilities of organizationsis
increasing dramatically, often they cannot take advantageof
these collections of potentially useful information sincead-
hoc data mining algorithms may be unavailable and traditional
machine learning and data analysis tools are practicable only
on small data sets.

A very useful task is to build a model of the data so as
to obtain a classifier for prediction purposes. Thenearest
neighbor rule[9], [28], [14] is one of the most extensively used
nonparametric classification algorithms, simple to implement
yet powerful, owing to its theoretical properties guaranteeing
that for all distributions its probability of error is bounded
above by twice the Bayes probability of error. The naive im-
plementation of this rule has no learning phase, in that it uses
all the training set objects in order to classify new incoming
data. A number of training set condensation algorithms have
been proposed that extract aconsistent subsetof the overall
training set, namely CNN, MCNN, NNSRM, FCNN, and
others [22], [19], [23], [13], [3], i.e. a subset that correctly
classifies all the discarded training set objects through the
nearest neighbor rule. These algorithms have been shown in
some cases to achieve condensation ratios corresponding toa
small percentage of the overall training set.

However, the performances of these algorithms may degrade
considerably, both in terms of memory and time consumption,
when they have to cope with huge datasets, consisting of a
very large number of objects, each of which can have several
attributes. Indeed, this amount of data can be too large to fit
into the main memory. Furthermore, the execution time may
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become prohibitive.
Parallel and distributed computation can be exploited in

order to manage efficiently these enormous collections of data.
Furthermore, the emerging paradigm of grid computing [15]
has chiefly provided access to large resources of computing
power and storage capacity. Typically, a user can harness the
unused and idle resources that organizations share in order
to solve very complex problems. Moreover, data reduction
through the partitioning of the data set into smaller subsets
seems to be a good approach. Unfortunately, to the best of
our knowledge, no parallel or distributed version of consistent
subset learning algorithms for the nearest neighbor rule has
been proposed in the literature.

This paper presents a distributed training set consistent
subset learning algorithm for the nearest neighbor rule, ex-
hibiting high efficiency both in terms of time and of mem-
ory usage. The algorithm, called PFCNN, for Parallel Fast
Condensed Nearest Neighbor Rule, is a distributed version of
the sequential algorithm FCNN [3], which has been shown to
outperform all the other training set consistent subset methods.
Distribution of data and their consequent handling raise many
problems that can be faced in different ways if the usage
of memory rather than the scalability or the execution time
is the main objective. Thus, different clever variants of the
basic distributed method are proposed, which bear in mind
these aspects. The main contributions of our approach are the
following: (i) PFCNN is the first distributed method for the
condensed nearest neighbor rule; (ii) it scales almost linearly
and is efficient in memory consumption; (iii) it permits the
same model as the sequential version to be computed.

The rest of the paper is organized as follows: first of all,
Section 2 briefly reviews the sequential FCNN rule; Section
3 describes the PFCNN algorithm; successively, Section 4
derives space requirements, and CPU and communication
costs of the methods; Section 5 discusses work related to that
here presented; finally, Section 6 reports experimental results
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Algorithm FCNN(T : training set)
1) Initialize the setS to the empty set
2) Initialize the set∆S to the setCentroids(T )
3) While the set∆S is not empty:

a) Augment the setS with the set∆S
b) Initialize the set∆S to the empty set
c) For each objecty in the setS, insert into∆S the

representative object of the Voronoi enemies ofy
in T w.r.t. S

4) Return the setS

Fig. 1. The (sequential) FCNN rule.

on both synthetic and real life very large high dimensional
data sets.

2 THE FCNN RULE

In this section, the sequential FCNN rule [3] is reviewed. First
of all, some preliminary definitions are provided.
T denotes a labelled training set from a space with distance

d. Let x be an element ofT . Then, nn(x, T ) denotes the
nearest neighbor ofx in T according to the distanced and
l(x) the label associated withx.

Given a labelled data setT and an elementy of the space,
the nearest neighbor ruleNN(y, T ) assigns toy the label of
the nearest neighbor ofy in T , i.e. NN(y, T ) = l(nn(y, T ))
[9].

A subsetS of T is said to be atraining set consistent subset
of T if, for eachx ∈ T , l(x) = NN(x, S) [22].

Let S be a subset ofT , and let y be an element ofS.
V or(y, S, T ) denotes the set{x ∈ T | ∀y′ ∈ S, d(y, x) ≤
d(y′, x)}, which is the set of the elements ofT that are closer
to y than to any other elementy′ of S, called theVoronoi cell
of y in T w.r.t. S.

Furthermore, we define asV oren(y, S, T ) the set{x ∈
V or(y, S, T ) | l(x) 6= l(y)}, whose elements are called
Voronoi enemiesof y in T w.r.t. S.
Centroids(T ) is the set containing the centroids of each

class label inT . The notion of centroid depends on the nature
of the considered space. In the following we assume to deal
with the Euclidean space. Given a set of pointsS having the
same class label, thecentroidof S is the point ofS which is
closest to the geometrical center ofS.

The Fast Condensed Nearest Neighbor Rule [3], FCNN for
short, relies on the following property: a setS is a training
set consistent subset ofT for the nearest neighbor rule iff for
each elementy of S, V oren(y, S, T ) is empty.

The FCNN algorithm is shown in Figure 1. The algorithm
initializes the consistent subsetS with a seed element from
each class label of the training setT . In particular, the seeds
employed are the centroids of the classes inT . The algorithm
is incremental. During each iteration the setS is augmented
until the stop condition, given by the property above, is
reached. For each element ofS, a representativeelement of
V oren(y, S, T ) w.r.t. y is selected and inserted intoS.

The behavior of two different definitions of representative
were investigated. FCNN1 is the name of the implementation
of the FCNN rule using the first definition, which selects as

Description
T Training set
N Number of training set objects (the size|T | of T )
d Number of training set attributes plus the class label
p Number of nodes (processors)
i Node identifier (1 ≤ i ≤ p)
Ti Training set partition assigned to nodei
S Training set consistent subset
n Number of consistent subset objects (the size|S| of S)
∆S Objects to be added to the current consistent subset
m Number of training set labels
j Identifier of the class (1 ≤ j ≤ m)
t Number of iterations executed by the PFCNN algorithm
k Current iteration number (1 ≤ k ≤ t)
Sk Consistent subsetS at the beginning of thekth iteration
∆Sk Incremental set∆S at the beginning of thekth iteration
nk Number of objects inSk (the size|Sk| of Sk)
∆nk Number of objects in∆Sk (the size|∆Sk| of Sk)
n′

k The size of the setSk ∪∆Sk (n′

k = nk +∆nk)
M The quantity

∑
k
nk∆nk

TABLE 1
Symbols used throughout the paper.

representative the nearest neighbor ofy in V oren(y, S, T ),
that is the elementnn(y, V oren(y, S, T )) of T . FCNN2 is
the name of the implementation of the FCNN rule using the
second definition, which selects as representative the class
centroid inV oren(y, S, T ) closest toy, that is the element
nn(y, Centroids(V oren(y, S, T ))) of T .

As far as the comparison between the two methods in the
sequential scenario is concerned [3], it can be said that the
FCNN2 rule appears to be little sensitive to the complexity of
the decision boundary, since it rapidly covers regions of the
space far from the centroids of the classes and tends to perform
no more than few tens of iterations. The FCNN1 is slightly
slower than the FCNN2 since it may require more iterations,
up to a few hundreds. On the other hand, the FCNN1 is likely
to select points very close to the decision boundary, and hence
may return a subset smaller than that of the FCNN2.

As for the time complexity of the method, letN denote
the size of the training setT and letn denote the size of the
consistent subsetS computed, then the FCNN1 rule requires
at mostNn distance computations to compare the elements
of T with the elements ofS.

Despite the algorithm being fast, it must be said that when it
copes with very large datasets the number of distance computa-
tions may grow and it might not meet the requirements of real-
time-like applications. In order to scale up the method on very
large datasets, a distributed implementation can be exploited.
Indeed, if the dataset is partitioned into disjoint subsets, each
allocated on a different node, by adopting a clever strategythe
total cost of the method can be reduced by a factor ideally
equal to the number of nodes. In the following section, a
distributed architecture for FCNN and its implementation is
introduced and discussed.
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Fig. 2. PFCNN architecture.

3 THE PFCNN RULE AND ITS ARCHITECTURE

Despite the FCNN algorithm being fast, its time requirements
grow with the size of the dataset. When huge collections
of data have to be handled, it is interesting to scale-up the
method. It will be shown that a distributed implementation
of the FCNN algorithm, called PFCNN (for Parallel FCNN),
whose architecture is introduced next, can cope with time and
memory requirements of large data sets.

The general architecture of the PFCNNs algorithms is
illustrated in Figure 2. The architecture is composed ofp

nodesP1, . . . , Pp. The original training setT is partitioned
in p disjoint partitionsT1, . . . , Tp, each assigned to a distinct
node. PFCNN can also be used when the data set is already
distributed among nodes and cannot be moved (i.e. for pri-
vacy reasons). Each nodei computes, in parallel, the overall
condensed setS using only its partitionTi of the training set.
Note that there is a copy of the entire condensed data setS

on each node. However, the size ofS corresponds to a very
small percentage of the training set (usually, it is some orders
of magnitude smaller).

Communication among the different nodes is efficiently
implemented on a parallel environment using the MPI libraries
[20] and on a grid computing environment using the mpich-G2
libraries [24].

In the following, first of all the two basic PFCNNs strate-
gies, that is the PFCNN1 and PFCNN2 rules, are described.
Then, different variants, namely the PFCNN-t, PFCNN-p, and
PFCNN-b, which further improve time and memory consump-
tion of the two basic rules, are introduced.

The PFCNN1 rule is now described. For the reader’s con-
venience, the symbols employed in the sequel of the paper are
summarized in Table 1.

3.1 PFCNN1 rule

Figure 3 shows the Parallel FCNN1 algorithm. It should be
recalled that the PFCNN1 rule is the variant of the PFCNN
rule using the nearest neighbor as representative of the Voronoi
enemies of a consistent subset element.

Let p be the number of nodes available. Each node is
identified by an integer numberi such that1 ≤ i ≤ p. The
pseudo-code reported in Figure 3 is executed on the generic
nodei. The variables employed there are local to the nodei,
except for those handled by parallel functions, which instead
come from different nodes. When it is necessary to distinguish
the nodei from which a variablev comes from, then the
notationvi will be used.

There follows a description of the data structures employed
and of how data is located on the different nodes.

As already clarified, the overall training setT , containingN
objects, is randomly partitioned intop equally sized disjoint
blocks T1, . . . , Tp and then each nodei receives in input
the blockTi. Differently from the training setT , each node
maintains a local copy of the entire consistent subsetS.

Furthermore, each node maintains two arrays:nearest and
rep. The arraynearest, having sizeN

p
, contains for each point

x in Ti its closest pointnearest[x] in the setS. The array
rep contains, for each pointy in S, its representativerep[y]
of the misclassified points lying in the Voronoi cell ofy in Ti

w.r.t. S.
Now it is possible to comment on the code reported in

Figure 3.
First of all, steps1-3 compute the geometrical center of

each training set class, while steps4-5 compute the centroids
C[1], . . . , C[m] of each class.

Two communication functions are employed in these
steps, that isparallel–sum and parallel–min. The parallel–
sum(v1, . . . , vp) is a parallel function which gathers thep
(arrays of) integer or real numbersv1, . . . , vp from the p

nodes and then returns the sumv1 + . . .+ vp of these values.
Theparallel–min(〈u1, v1〉, . . ., 〈up, vp〉) is a parallel function
gathering thep valuesu1, . . . , up, together with thep integer
or real numbersv1, . . . , vp, and then returning the valueui

associated to the smallest numbervi amongv1, . . . , vp.
Once the centroidsC[1], . . . , C[m] of the training set classes

are computed, the set∆S is initialized to{C[1], . . . , C[m]},
the consistent subsetS is initialized to the empty set, the
closest elementnearest[x] in S of each elementx in Ti is
set to undefined (steps6-8), and then the iterative part of the
algorithm starts.

During each iteration, the arraynearest and rep must be
updated since they represent, respectively, the partitioning of
the points ofTi into Voronoi cells and the points in the new
set∆S.

Let ∆S be the set of points to be added to the setS during
the current iteration (at the first iteration this set coincides
with the class centroids). To update the arraynearest, the
training set points in(Ti − S) are compared with the points
in the set∆S (step 9.(a)). Clearly, it is not necessary to
compare the points in(Ti − S) with the points inS, since
this comparison was already done in the previous iterations
and nearest neighbors so far computed are currently stored in
nearest.

After having computed the closest pointnearest[x] in ∆S

of the pointsx in (Ti−S), the arrayrep is updated efficiently
(step 9.(c)) as follows: if the class ofx is different from the
class ofnearest[x], thenx is misclassified. In this case, if the
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Algorithm PFCNN1(Ti : a training set block)
1) For each classj = 1, . . . ,m: compute the sums[j] of all the elements ofTi of the classj, together with their numberN [j]
2) For each classj = 1, . . . ,m: s[j] = parallel–sum(s1[j], . . . , sp[j]), N [j] = parallel–sum(N1[j], . . . , Np[j])
3) For each classj = 1, . . . ,m: compute the centerc[j] = s[j]/N [j]
4) For each classj = 1, . . . ,m: compute the elementC[j] in Ti of the classj which is closest toc[j]
5) For each classj = 1, . . . ,m: C[j] = parallel–min(〈C1[j], d(c[j], C1[j])〉, . . ., 〈Cp[j], d(c[j], Cp[j])〉)
6) Initialize the set∆S to the set{C[1], . . . , C[m]}
7) Initialize the setS to the empty set
8) For each elementx in Ti: setnearest[x] to undefined
9) While the set∆S is not empty:

a) For each elementx in Ti − S, and for each elementy in ∆S: if the distance betweenx and y is less than the distance
betweenx andnearest[x] then setnearest[x] to y

b) For each elementy in S: setrep[y] to undefined
c) For each elementx in Ti−S: if the class ofx is different from the class ofnearest[x] and the distance fromx to nearest[x]

is less than the distance fromnearest[x] to rep[nearest[x]] then setrep[nearest[x]] to x
d) Augment the setS with the set∆S
e) For eachy in S, rep[y] = parallel–min(〈rep1[y], d(y, rep1[y])〉, . . ., 〈repp[y],d(y, repp[y])〉)
f) Initialize the set∆S to the empty set
g) For each elementy is S: if rep[y] is defined then insertrep[y] into ∆S

10) Return the setS

Fig. 3. The PFCNN1 rule.

distance fromnearest[x] to x is less than the distance from
nearest[x] to its current representativerep[nearest[x]], then
rep[nearest[x]] is set tox.

At the end of each iteration, for eachy in S, the elements
repi[y] of each nodei are exploited to find the representative
of the Voronoi enemies ofy in the overall training setT (step
9.(e)). Indeed, for eachy in S, its nearest enemy inT w.r.t.
S is the closest point among its nearest enemiesrep1[y], . . .,
repp[p] w.r.t., respectively,T1, . . . , Tp. This closest point can
be retrieved efficiently by using the parallel functionparallel–
min as shown in Figure 3.

Once the true representatives of the Voronoi enemies of
each point in the current consistent subsetS are computed,
and stored into the arrayrep, the set∆S is built with the
points stored into the entries of the arrayrep. Notice that not
all the entries of the arrayrep will be defined, since there
might be points inS whose Voronoi cell contains only points
of the same class.

3.2 PFCNN2 rule
Figure 4 shows the Parallel FCNN2 algorithm. It should be
recalled that the PFCNN2 rule differs from the PFCNN1 for
the definition of representative of the Voronoi enemies. In
particular, the representative is defined as the closest class
centroid.

As for the data structures there employed, the training set
block Ti, the consistent subsetS, and the arraysnearest and
rep have the same semantics described above.

Steps 1-8 are the same as the PFCNN1 rule, while subse-
quent step 9 is the main iteration of the algorithm.

During each iteration, first of all, each elementx in (Ti −
S) is compared with the elementsy of ∆S, and the entry
nearest[x] of the arraynearest is updated to contain the
element ofS which is closest tox (step 9.(a)).

Once the elements in∆S have been compared with all the
elements inTi−S, the arrayrep can be updated. To this aim,

steps 9(c)-(e) compute the centersc[y, j] of the points of the
Voronoi cell of y in T w.r.t. S having class labelj, while
subsequent steps 9(f)-(g) compute the centroidsC[y, j] of the
points of the Voronoi cell ofy in T w.r.t. S having class label
j.

Finally, steps 10(h)-(k) set the entriesrep[y] of rep to the
centroid amongC[y, 1], . . . , C[y,m] which is closest toy, and
then build the new set∆S.

In the following, three variants of the two above-described
basic rules, namely the PFCNN-t, PFCNN-p, and PFCNN-b
rules, are introduced.

3.3 PFCNN-t

If the distance employed satisfies thetriangle inequality, then
the number of distances computed by the PFCNN rules can be
reduced. Indeed, since at the beginning of each iteration the
distance from each objectx of Ti to its current closest element
nearest[x] in S is known, this information can be exploited
to compare each objectx of T with a subset of∆S instead
of the entire set∆S, thus saving distance computations. This
subset will be composed only of the elements of∆S candidate
to be closer thannearest[x] to x.

To this aim, for eachy in S, the distances fromy to
the elements of∆S are computed, and then these elements
are sorted in order of increasing distance fromy. Then, the
elements of the Voronoi cell ofy in Ti w.r.t. S, that is the
elementsx of Ti such thatnearest[x] = y, are compared with
the elementsz in ∆S having distance fromy less than twice
the distance fromx andy. Indeed, by the triangle inequality,
they are all and the only elements of∆S candidate to be closer
to x thany.

That is, by using this strategy the generic elementx of T is
not compared with the elementsz of ∆S such thatd(z, y) ≥
2d(x, y), wherey = nearest[x]. By the triangle inequality,
d(z, x)+d(x, y) ≥ d(z, y), thusd(z, x)+d(x, y) ≥ 2d(x, y),
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Algorithm PFCNN2(Ti : a training set block)
1-8. The same as the PFCNN1 rule

9. While the set∆S is not empty:
a) For each elementx in Ti −S, and for each elementy in ∆S: if the distance betweenx andy is less than the distance from

x to nearest[x] then setnearest[x] to y
b) Augment the setS with the set∆S
c) For each elementy in S, and for each classj = 1, . . . ,m: compute the sums[y, j] of all the elementsx in Ti of the class

j such thatnearest[x] = y, together with their numberN [y, j]
d) For each elementy in S, and for each classj = 1, . . . , m: s[y, j] = parallel–sum(s1[y, j], . . ., sp[y, j]), N [y, j] = parallel–

sum(N1[y, j], . . ., Np[y, j])
e) For each elementy in S, and for each classj = 1, . . . ,m: compute the centerc[y, j] = s[y, j]/N [y, j]
f) For each elementy in S, and for each classj = 1, . . . ,m: compute the elementC[y, j] in Ti of the classj such that

nearest[C[y, j]] = y which is closest toc[y, j]
g) For each elementy in S, and for each classj = 1, . . . ,m: C[y, j] = parallel–min(〈C1[y, j], d(C1[y, j], c1[y, j])〉, . . .,

〈Cp[y, j], d(Cp[y, j], cp[y, j])〉)
h) Initialize the set∆S to the empty set
i) For each elementy in S: setrep[y] to undefined
j) For each elementy is S: setrep[y] to the point amongC[y, 1], . . . , C[y,m] which is closest toy
k) For each elementy is S: if rep[y] is defined then insertrep[y] into ∆S

10. Return the setS

Fig. 4. The PFCNN2 rule.

and d(z, x) ≥ d(x, y). Hence, the elementsz of ∆S not
compared withx cannot be closer tox thany, and computing
the distanced(x, z) has the only effect of wasting time.

Notice that this strategy does not need to store together all
the distances in the setD = {d(y, z) | y ∈ S, z ∈ ∆S}.
Indeed, while visiting the Voronoi cell ofy ∈ S, only the
distances amongy and the elements of the set∆S are needed.

The method obtained by augmenting the PFCNN rule with
the strategy above depicted is called the PFCNN-t rule. The
PFCNN1-t and PFCNN2-t rules may reduce the number of
distances computed w.r.t. the PFCNN1 and PFCNN2 rules,
respectively, and thus accelerating their execution time.How-
ever, since the setsS and∆S are identical in each node, it is
the case that the same computation, i.e. the calculation of all
the pairwise distances in the setD, will be carried out in each
node. Although this strategy has the advantage of not requiring
additional communications, this replicated computation may
deteriorate the speed-up of the algorithm.

3.4 PFCNN-p
The PFCNN-t rules can be scaled-up by parallelizing the
computation of the distances in the setD and their sorting.
To this aim, each nodei can compute a disjoint subset of
the distances inD, sort them, and then it can gather in a
single communication the distances computed by any other
node. Once the distances in the setD are available to all
the nodes, then each node can compare the elements ofTi

with the elements of∆S according to the strategy adopted
by the PFCNN-t rule. The PFCNN-t rule augmented with the
strategy depicted above is called the PFCNN-p rule. Unlike
the PFCNN-t rule, the PFCNN-p rule stores together all
the distances in the setD, and, hence, depending on the
characteristics of the dataset, it could require a huge amount
of memory. As an example, if|S| = 105 and |∆S| = 104,
then D is composed of one thousand million floating point
numbers.

3.5 PFCNN-b

As noted while describing the PFCNN-t rule, the distances in
the setD are not needed together, and, hence, the memory
consumption of the PFCNN-p rule can be alleviated, even if
at the expense ofmultiplecommunications. To this purpose,S

can be partitioned intobn blocks, namedB1, . . . , Bbn , having
size bs each. Then, the strategy of the PFCNN-p rule can
be applied iteratively to each blockBh, h = 1, . . . , bn, and
at the end of each iteration, i.e. after having used them, the
distances{dist(y, z) | y ∈ Bh, z ∈ ∆S} can be discarded.
The PFCNN-p rule modified as described above is called the
PFCNN-b rule.

Figure 5 shows the computation of the distances between
the elements ofTi and the elements of∆S carried out by
the PFCNN-b rule. This pseudo-code must be substituted to
step 9(a) of Figure 3 (Figure 4, resp.) to obtain the PFCNN1-b
(PFCNN2-b, resp.) rule. A buffer of size2bs must be allocated
to store both the distances from the elements of the blockBh

and the elements of∆S, and the identifiers of the elements
of ∆S sorted according to their distance from each element
of Bh. The choice of the size of the buffer, and hence of
the number of blocksbn = |S|

bs
, is a trade-off between the

memory consumption, the cost of communication, and the cost
of computing the distances. Indeed, if the buffer is too small
then the cost of communication may overwhelm the savings of
CPU time obtained by exploiting the triangle inequality. The
effect of varying the size of the buffer on the two strategies
will be discussed in the experimental results section.

4 COST ANALYSIS

Analysis of the complexity of parallel and distributed programs
must bear in mind the communication overhead. In fact, even
very efficient algorithms in terms of computation can degrade
as the number of processors increase, owing to the unbalancing
of the ratio communication/computation cost. Thus, in the
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1) Partition the elements ofS into bn disjoint blocksB1, . . . , Bbn having sizebs
2) For eachh = 1, . . . , bn:

a) Partition the blockBh into p disjoint blocksBh,1, . . . , Bh,p having sizebs/p
b) For eachy in Bh,i, and for eachz in ∆S: compute the distance betweeny andz
c) For eachy in Bh,i: sort in increasing order the distances amongy and the elements of∆S
d) Gather from thep nodes the sorted distances between the elements of the blockBh and the elements of∆S
e) For eachy in Bh, and for eachx in Ti − S such thatnearest[x] = y:

i) Set c to y
ii) For each elementz in ∆S such that the distance fromz to y is less than twice the distance fromy to x: if the distance

betweenx and z is less than the distance betweenx andc then setc to z
iii) Set nearest[x] to c

f) Discard the sorted distances between the elements of the block Bh and the elements of∆S

Fig. 5. The computation of the distances between the elements of Ti and the elements of ∆S carried out by the
PFCNN-b rule.

following, both the CPU and the communication cost of the
algorithms will be studied, along with the spatial cost of the
method.

4.1 Spatial cost

Space is measured per single node and it is expressed in
number of words, where a word is the number of bytes
required to store a floating point number or an integer number.
It was assumed that each object is encoded as a tuple ofd

words, whered − 1 words are employed to store attribute
values, and the remaining word to store the class label. Space
complexities are summarized in Table 2.

The PFCNN1 requires spaceNd
p

to store the training set
block Ti and spacend to store the consistent subsetS. In
addition, space2N

p
is needed to store both the identifier of the

closest elementnearest[x] in S of each objectx in Ti and
the distance fromx to nearest[x], while space2n is required
to store both the identifier of the representativerep[y] of the
Voronoi enemies of each objecty in S w.r.t.Ti and the distance
from y to rep[y]. Thus, the total space required amounts to
(N
p
+ n)(d + 2) words.

The PFCNN2 rule requires, in addition to the PFCNN1 rule,
nmd words to store the class centers/centroids of the Voronoi
cells associated with the elements inS.

In addition to the basic rule, the PFCNN-t rule requires
space2maxk{∆nk} to store distances among a single element
of S and∆S, while the PFCNN-p rule space2maxk{nk∆nk}
to store distances among elements ofS and∆S. Finally, the
PFCNN-b rule requires a buffer of sizeBUF to store the
distances between the current blockBh of elements ofS and
∆S.

4.2 CPU cost

The CPU cost is expressed as the number of distance computa-
tions required by a single node, since the most costly operation
performed is the computation of the distance between two
objects.

The analysis of the CPU cost is summarized in Table 3 (the
exact derivation of these formulas is reported in the Appendix),
where the parameterα ∈ (0, 1] takes into account the fact that

the triangle inequality may reduce the comparisons between
elements ofTi and elements of∆S. It represents the average
fraction of points of∆S compared with each point ofTi.

Note that the temporal cost of the PFCNN1 and PFCNN2
strategies is approximately upper bounded byNn

p
. Further-

more, if the sizen of the consistent subsetS is small compared
to the sizeN of the overall training setT , then it is the case
thatM is negligible w.r.t.Nn. In this case, the temporal cost
of all the strategies can be approximated toNn

p
(this is true

also for the worst case, i.e.α = 1, of the PFCNN-t). Note that
this cost is, in terms of distance computations, the best that
can be achieved by a parallel algorithm usingp nodes.

4.3 Communication cost

The notations ∗ c is used to denote the dispatching ofc
blocks of data ofs words each. Table 4 summarizes the com-
munication costs of the various methods. See the Appendix
for the derivation of the formulas reported in Table 4 and
for the definition of the costC0 of computing centroids. The
communication cost per iteration of the PFCNN1 rule is

C1(k) = 2n′
kp ∗ 1 + ∆nk+1d ∗ 1

Method Spatial cost

PFCNN1
(

N
p

+ n
)

(d+ 2)

PFCNN1-t
(

N
p

+ n
)

(d + 2) + 2maxk{∆nk}

PFCNN1-p
(

N
p

+ n
)

(d+ 2) + 2maxk{nk∆nk}

PFCNN1-b
(

N
p

+ n
)

(d+ 2) + BUF

PFCNN2
(

N
p

+ n
)

(d+ 2) +mnd

PFCNN2-t
(

N
p

+ n
)

(d + 2) +mnd + 2maxk{∆nk}

PFCNN2-p
(

N
p

+ n
)

(d+ 2) +mnd+ 2maxk{nk∆nk}

PFCNN2-b
(

N
p

+ n
)

(d+ 2) +mnd+ BUF

TABLE 2
Spatial cost of the PFCNNs strategies (per node).
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Method CPU cost

PFCNN1
N(n+m)

p
−

M

p

PFCNN1-t
N(αn+m)

p
+

M(p − α)

p

PFCNN1-p(-b)
N(αn +m)

p
+

M(1− α)

p

PFCNN2
N(n+m+ t)

p
−

M

p
+ nm

PFCNN2-t
N(αn +m+ t)

p
+

M(p − α)

p
+ nm

PFCNN2-p(-b)
N(αn+m + t)

p
+

M(1 − α)

p
+ nm

TABLE 3
CPU cost of the PFCNNs strategies.

while the communication cost per iteration of the PFCNN2
rule is

C2(k) = n′
kdmp ∗ 1 + 2∆nk+1mp ∗ 1 + ∆nk+1md ∗ 1.

From these formulas it is clear that the PFCNN1 exchanges
considerably less data than the the PFCNN2. Indeed, for each
of then′

k objects in the current subsetSk∪∆Sk, the PFCNN1
exchanges only the distances from their nearest enemy on
each node (2p words), whereas the PFCNN2 exchangesdmp

words. Furthermore, for each of the∆nk+1 objects in the set
∆Sk+1, the PFCNN1 exchangesd word whereas the PFCNN2
exchanges2mp+md words.

In addition, PFCNN-p rule requires an exchange ofnk∆nk

distances between the elements ofTi and the elements of
∆S and the associated identifiers. For PFCNN-b, the2nk∆nk

words are sent in blocks ofBUF words by performing
2nk∆nk

BUF
communications.

4.4 Discussion

It is worth recalling that the FCNN rule requires approximately
Nn distance computations, while it has already been noticed
that the temporal cost of all the strategies can be approximated
to Nn

p
.

The methods exploiting the triangle inequality may guaran-
tee great savings with respect to this worst case complexity.
In particular, as noted above, the PFCNN1-t and PFCNN2-
t methods require the same communications of the PFCNN1
and PFCNN2 methods, respectively.

However, if the consistent subset becomes large, and hence
the parameterM becomes significant, their performance could
deteriorate since each node has to computeM distances.

On the contrary, The PFCNN1-p(-b) and PFCNN2-p(-
b) rules present a negligible overhead with respect to the
PFCNN1 and PFCNN2 methods, respectively, yet their speed
up in terms of computed distances is almost equal to the
number of nodesp (note that, from a theoretical point of view,
by parallelizing the computation carried out in step 9(j) of
Figure 4, the costmn to be paid by the PFCNN2 rule can be
broken down tomn

p
; it was preferred not to parallelize this

step as CPU computation savings do not offset the additional
communication overhead).

Method Communication cost

PFCNN1(-t) C0 +
∑

k

C1(k)

PFCNN1-p C0 +
∑

k

(2nk∆nk ∗ 1 + C1(k))

PFCNN1-b C0 +
∑

k

(BUF ∗
2nk∆nk

BUF
+ C1(k))

PFCNN2(-t) C0 +
∑

k

C2(k)

PFCNN2-p C0 +
∑

k

(2nk∆nk ∗ 1 + C2(k))

PFCNN2-b C0 +
∑

k

(BUF ∗
2nk∆nk

BUF
+ C2(k))

TABLE 4
Total amount of data exchanged by the PFCNNs

strategies.

If the PFCNN1 and PFCNN2 strategies perform the same
number of iterations, then the former should perform better.
Indeed, if the communication cost is considered, it is clear
from Table 4 that the PFCNN1 rule is more advantageous than
the PFCNN2 rule in terms of amount of data to be exchanged.
However, it has been observed [3] that the FCNN2 rule always
completes within about ten iterations, since it rapidly covers
regions of the space far from the centroids of the classes,
whereas the PFCNN1 rule may require, depending of the
characteristics of the data, either approximatively the same
number of iterations of the PFCNN2 rule or up to hundreds
of iterations.

5 RELATED WORK

The literature related to this work can be classified in different
groups. First of all, there is the literature concerningclassi-
fication methods for large data sets(refer to [16], [21] for
details).

Severaltraining set condensation algorithmshave been in-
troduced in the literature [34], [8], [29], that is, instance-based
[2], lazy [1], memory-based [27], and case-based learners [32].
These methods can be grouped into competence preservation,
competence enhancement, and hybrid approaches. Compe-
tence preservation methods compute a training set consistent
subset removing superfluous instances that will not affect
the classification accuracy. Competence enhancement methods
aim at removing noisy instances in order to increase accuracy.
Hybrid methods search for a subset that, simultaneously,
achieves both noisy and superfluous instances elimination.

The concept of atraining set consistent subset for the
nearest neighbor rulewas introduced by [22] together with
an algorithm, called the CNN rule (for Condensed Nearest
Neighbor rule), to determine a consistent subset of the original
sample set. The CNN is order dependent, that is, it has
the undesirable property that the consistent subset depends
on the order in which the data is processed. Thus, multiple
runs of the method over randomly permuted versions of the
original training set should be executed in order to determine
the quality of its output [4]. The MCNN rule (for Modified
CNN rule) [13] computes a training set consistent subset in
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an incremental manner. Unlike the CNN rule, the MCNN
rule is order independent, that is, it always returns the same
consistent subset independently of the order in which the data
is processed. However, the method could require a lot of
iterations to converge. In order to compute a small consistent
subsetS of the training setT , [23] proposed the algorithm
NNSRM (for Structural Risk Minimization using the NN rule).
Nevertheless, its time complexity is quite high:O(|T |3). The
RNN rule [19], for Reduced NN rule, is a post-processing
step that can be applied to any other competence preservation
method. Experiments have shown that this rule yields a slightly
smaller subset than the CNN rule, but it is costly. Methods
previously discussed compute a training set consistent subset
in an incremental or decremental manner and have polynomial
execution time requirements. The MCS rule [11], for Minimal
Consistent Subset, aims at computing a minimum cardinality
training set consistent subset (an NP-hard task, see [33]).
The algorithm, based on the computation of the so-called
nearest unlike neighbors [12], is quite complex. Furthermore,
counterexamples have been found to the conjecture that its
computes a minimum cardinality subset. Approximate op-
timization methods, such as tabu search, gradient descent,
evolutionary learning, and others, have been used to compute
subsets close to the minimum cardinality one [25]. Both the
MCS and these algorithms can be applied in a reasonable
amount of time only to a small or medium sized data set.

It is the case to recall here that, to the best of our knowledge,
no distributed method for computing a training set consistent
subset for the nearest neighbor rule has been presented in
literature. This may be due to the fact that methods other than
the FCNN rule seem to have a structure which is not very
parallelizable, basically since operations executed during each
iteration must be necessarily executed in sequence, while each
iteration of the FCNN rule can be parallelized very efficiently.

Finally, we mention two categories of methods which are
complementary to the task here considered.

The first category concerns methods forspeeding-up nearest
neighbor search[10], [18], [7], which may alleviate the cost of
searching for the nearest neighbor of a query point. Basically,
the goal of these methods is to provide a data structure, often
called index or tree, storing the data set, which is able to
speed up search for nearest neighbors during classification.
These methods are complementary to the task here considered
since indexes can be profitably used at classification time to
speed up nearest neighbor search either in the original training
set or in a consistent subset of it. In particular, both spatial
and temporal costs of index structures depend on the size of
the data set. Thus, using a consistent subset instead of the
whole training set is advantageous from the point of view of
computational resources to be employed.

The second category concerns methods for improving clas-
sification accuracy or response time through the use ofmultiple
nearest neighbor classifiers.

In [4] it is proposed a method to train multiple condensed
nearest neighbor classifiers on smaller training sets and totake
a vote over them. In [5], [6] the MFS algorithm is described,
combining multiple nearest neighbor classifiers, each using
only a random subset of the features. In [31] the authors
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Fig. 6. Checkerboard dataset: size of ∆S vs the iteration
number (note the vast difference in the horizontal and
vertical scales).

propose to use an ensemble of multiple approximate (weak)
nearest neighbor classifiers to speed-up classification time.

In [35] a modulark-nearest neighbor classification method
for massively parallel text categorization is presented. The
method decomposes the overall problem into a number of
smaller two-class base subproblems and finally combines their
outputs by means of a Min-Max Modular neural network
model [26]. This approach has some relationship with the
Round Robin classification, which transforms am-class prob-
lem intoO(m2) two-class base subproblems [17].

If each base classifier can be allocated on a different pro-
cessor, since a grid or a large-scale cluster system is available,
then the speed up achievable by all the above mentioned
methods is equal to the number of base classifiers, otherwise
the speed up is equal to the number of available processor.

It is important to point out that also ensemble and decompo-
sition methods are complementary w.r.t. the task of condensing
the training set, since they can be used on condensed training
sets to obtain a better classifier or to further speed up response
time. Indeed, while the goal of condensation algorithms is
to reduce the size of the stored data maintaining the same
classification accuracy as the original training set, the goal of
using multiple classifiers is to improve classification accuracy
time and/or elaboration time. Again, both spatial and temporal
costs of ensemble/decomposition methods depend on the size
of the data set, and using a consistent subset instead of
the whole training set greatly reduces their computational
requirements.

6 EXPERIMENTS

All the experiments were performed on a Linux cluster with
16 Itanium21.4GHz nodes each having 2 GBytes of main
memory and connected by a Myrinet high performance net-
work.

The experiments are organized as follows. First of all, in
order to compare the behavior of the different strategies, a
family of synthetically generated training sets was considered.
Then, the methods were tested on three large high dimensional
real datasets. Finally, the accuracy of the PFCNN rule is
compared with the accuracy of the nearest neighbor rule on
some difficult classification tasks.
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Fig. 7. Checkerboard dataset: speedup.

6.1 Synthetic datasets

A family of synthetic datasets, calledCheckerboarddatasets,
was considered. Each dataset of the family is composed of two
dimensional points into the unit square. A4×4 checkerboard,
ideally drawn onto the unit square, partitions the points into
two classes associated with the white and black cells of the
board. Data sets composed of one million points (each point is
encoded with three words, two representing point coordinates
and the last one representing the class label, for a total of
11MB), ten million (114MB), twenty million (229MB), and
fifty million points (573MB) are taken into account.

In order to evaluate the scalability of the algorithms the
largely used speedup parallel metric was employed. LetTseq

denote the execution time of the sequential algorithm, and
let Tp denote the execution time of the parallel algorithm on
p processors. Then thespeedupSup(p) on p processors is
defined asSup(p) =

Tseq

Tp
. If the algorithm scales ideally its

speedupSup(p) is p for all values ofp.
The analysis of the curse of the size of the set∆S and of

the number of iterations of the different strategies, reported in
Figure 6, is the starting point, since, as pointed out in section
4 (see Tables 2, 3, and 4), the course of∆S is fundamental
to the understanding of the execution time, scalability, and
memory usage. In the PFCNN1 case, the number of iterations
increases from about one hundred, for one million points, to
about one thousand, for fifty million points, while the peak
of |∆S| remains almost the same. As for the PFCNN2, on
the contrary the number of iterations remains almost identical
regardless of the dataset size, while the peak of|∆S| increases
sensibly.

Consider the speedup curves of Figure 7. It is worth noticing
that the PFCNN1 and PFCNN2 scale almost linearly. This
confirms that the parallelization is very efficient. As for the
triangle inequality based strategies, for all the dataset sizes,

(a) 1 million of points
Seq 2 4 8 16

PFCNN1 379.6 189.9 95.1 47.6 24.1
PFCNN1-t 122.0 62.2 32.4 18.0 11.7
PFCNN1-p – 69.7 33.9 16.6 8.9
PFCNN2 493.5 246.8 123.5 61.9 31.1
PFCNN2-t 54.5 30.5 18.5 12.3 9.6
PFCNN2-p – 31.5 16.2 8.7 5.4

(b) 10 millions of points
Seq. 2 4 8 16

PFCNN1 7765 3861 1932 967 483
PFCNN1-t 3171 1593 789 409 221
PFCNN1-p – 1806 889 449 231
PFCNN2 15474 7717 3890 1944 977
PFCNN2-t 900 487 287 183 135
PFCNN2-p – 567 308 166 95

(c) 20 millions of points
Seq 2 4 8 16

PFCNN1 33646 168265 8426 4217 2137
PFCNN1-t 9374 4729 2359 1239 695
PFCNN1-p – 5486 2700 1366 716
PFCNN2 43823 21912 10983 5474 2781
PFCNN2-t 2193 1199 671 422 308
PFCNN2-p – 1484 753 398 226

(d) 50 millions of points
Seq 2 4 8 16

PFCNN1 134457 67229 33658 16840 8435
PFCNN1-t 39793 19897 9658 4979 2737
PFCNN1-p – 23156 11155 5624 2940
PFCNN2 172799 86396 43201 21724 11161
PFCNN2-t 8253 4129 2204 1489 991
PFCNN2-p – 5386 2640 1411 838

TABLE 5
Checkerboard: execution time.

the PFCNN2-p outperforms the PFCNN2-t. This is due to
the parallelization of the comparison among the elements of
S and ∆S as explained in Section 4. The same is not true
for the PFCNN1-t and PFCNN1-p that require almost the
same amount of time (except for the smallest dataset, where
the PFCNN1-p is sensibly better than the PFCNN1-t). This
behavior is due to the fact that the size of∆S is small over
all the iterations and distance computation savings do not
offset the additional communication overhead to be paid by
the PFCNN1-p. Except for the PFCNN2 basic strategy, the
other PFCNN2 strategies scale worse than the corresponding
PFCNN1 strategies.

Since on average the set∆S computed by the PFCNN2
is much larger than the same set computed by the PFCNN1,
it was expected that the triangle inequality guarantees great
savings on the PFCNN2 rule, and hence that the PFCNN2-t
and PFCNN2-p strategies are faster than the PFCNN1-t and
PFCNN1-p strategies, respectively. This behavior is confirmed
by the execution time reported in Table 5. The same behavior
cannot be observed on the PFCNN1 and PFCNN2. It can be
concluded that, without the time savings guaranteed by the
triangle inequality, the PFCNN2 is slower than the PFCNN1.

Figure 8 shows the size of the consistent subset computed
versus the dataset size. It can be observed that the PFCNN1
algorithm guarantees a higher compression ratio than the
PFCNN2, even if the former takes more time than the latter
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when the triangle inequality is exploited.

1M 10M 20M 50M
FCNN-Seq 19 (19) 191 (191) 382 (382) 954 (954)
PFCNN1-t 1 (1) 12 (12) 24 (24) 60 (60)
PFCNN1-p 3 (2) 15 (13) 35 (28) 75 (66)
PFCNN2 1 (1) 13 (13) 25 (25) 61 (61)
PFCNN2-t 1 (1) 13 (13) 25 (25) 61 (61)
PFCNN2-p 35 (8) 362 (73) 682 (141) 1788 (353)

TABLE 6
Checkboard dataset: maximum (average in parenthesis)

memory usage per node (MBytes) with p = 16.

Table 6, shows the memory usage per node assuming that
16 nodes are used. Interestingly, memory becomes critical
only for the PFCNN2-p and when the dataset consists of 50
millions of points. In fact, as memory depends on the factor
|S| · |∆S|, the strategy reaches a peak of 1788MB of memory
usage during the19th iteration (see Figure 6(b)).

Thus, this strategy is not practicable on larger datasets
on the employed architecture. In any case, the PFCNN2-b
strategy can be used. Figure 9 shows the execution time of
the PFCNN1-b and PFCNN2-b strategies versus the dimen-
sion BUF of the buffer on the data set composed of 50
millions points. In general, if the buffer is too small, then
the communication cost outweighs the advantages of a better
usage of the memory. Nonetheless, as soon as the sizeBUF

of the buffer becomes sufficiently large, i.e. at least 16MB
in the case considered, then the PFCNN1-b and PFCNN2-b
strategies reach their best behavior. In particular, the PFCNN1-
b exhibits the same execution time of the PFCNN1-p, since
the buffer is sufficient to store all the distances between the
elements ofS and the elements of∆S, the latter set being
very small. Surprisingly, the PFCNN2-b performs better than
the PFCNN2-p. This can be explained since the overhead due
to additional communications is offset by the efficient memory
usage. As a result, the PFCNN2-b strategy terminates in about
750 seconds, which is the fastest time scored on this dataset,
with a buffer of 16MB and a total memory usage of 67MB.

6.2 Real life datasets

Three real datasets were considered, namely theExtended MIT
Face dataset, theDARPA 1998and theForest Cover Type
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Fig. 9. Checkboard dataset: execution time vs buffer
dimension.

dataset.
The MIT Face detection dataset is an extended version of

the MIT face database, built by adding to the original dataset
both novel non face image examples and face image examples
obtained applying various image transformations to the faces
already present, as described in [30]. The dataset is composed
of 471,914 objects of the classnon face(the 96.43% of the
total) and17,496 of the classface (3.57% of the total), each
having361 features, for a total of489,410 objects (676 MB).

The Defense Advanced Research Projects Agency 1998
intrusion detection evaluation data set1 consists of network
intrusions simulated in a military network environment. The
TCP connections have been elaborated to construct a data set
of 23 features, one of which identifies the kind of attack:
DoS, R2L, U2R, andPROBING. The TCP connections from 5
weeks of training data were used. The data set is composed of
458,301 objects (42MB) partitioned into two classes:normal
representing normal data (456,320 objects), andattack asso-
ciated with the different types of attack (1,981 objects).

The Forest Cover Type dataset2 comprises data representing
forest cover types from cartographic variables determined
from US Forest Service and from US Geological Survey.
It is composed by495,141 tuples each having54 features
(104MB), partitioned in two classes.

Figure 10 shows the curse of the size of∆S versus the
iteration number of the PFCNN1 and PFCNN2 for the three
above described datasets. Note that for the first two datasets the
behavior of the two rules is very similar. Indeed, they perform
almost the same number of iterations and reach a peak of about
the same size, event though on the DARPA 1998 the PFCNN2
required less iterations and presents a peak higher than that
of the PFCNN1. On the other hand, on the Forest Cover Type
dataset, PFCNN1 performs less than half as many iterations
and reaches a peak that is about three times as large as the
peak reached by the other rule. This will affect scalabilityand
execution time, as shown in the following.

6.2.1 MIT Face

Experimental results concerning the MIT Face dataset are
shown in Table 7. Note that in the sequential scenario, the
PFCNN2 performs better than the PFCNN1 and also that

1. http://www.ll.mit.edu/IST/ideval/index.html
2. http://kdd.ics.uci.edu/databases/covertype/covertype.html
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Fig. 10. Size of ∆S for the MIT Face, DARPA 1998 and
Forest Cover Type datasets.

the triangle inequality further reduces the execution time.
Nevertheless, as the number of processors increases, while
the speedup of the PFCNN1 is excellent, the speedup of the
PFCNN2 deteriorates, and, as a result, the PFCNN1 is faster
if all the 16 nodes are employed, even though in all cases the
algorithms terminates in about one minute. It is interesting
to understand the reason why the speedup of the PFCNN2
deteriorates. It was verified that this behavior is associated with
a high communication overhead, exhibited in correspondence
to data exchanged in step 9(d) of Figure 4, due the very high
dimensionality of the dataset. Maximum and average memory
usage is good for all the strategies since the peak of|∆S| is
very small.

On this dataset, the PFCNN1 computed, after81 iterations,
a subset composed of a total of3,362 objects (0.69% of
the whole training set) of which3,108 are of the classnon
face (0.66% of the class objects), and254 of the classface
(1.45% of the class objects). The PFCNN2 computed, after

(a) Execution time vs number of nodes
Seq 2 4 8 16

PFCNN1 823.0 411.67 204.45 103.24 53.00
PFCNN1-t 781.1 390.88 195.94 101.02 55.01
PFCNN1-p – 415.32 206.03 104.56 53.60
PFCNN2 770.9 385.82 203.03 114.62 79.77
PFCNN2-t 725.0 362.07 191.86 110.35 79.41
PFCNN2-p – 379.89 198.93 111.79 78.22

(b) Speedup
2 4 8 16

PFCNN1 2.00 4.03 7.97 15.53
PFCNN1-t 2.00 3.99 7.73 14.20
PFCNN1-p 1.88 3.79 7.47 14.57
PFCNN2 2.00 3.80 6.73 9.66
PFCNN2-t 2.00 3.78 6.57 9.13
PFCNN2-p 1.91 3.64 6.49 9.27

(c) Memory usage,p = 16 (MBytes)
Sequential Parallel

Max Avg Max Avg
PFCNN1 684 684 47 47
PFCNN1-t – – 47 47
PFCNN1-p – – 49 48
PFCNN2 693 691 56 53
PFCNN2-t – – 56 53
PFCNN2-p – – 56 54

TABLE 7
MIT Face dataset: experimental results.

78 iterations, a subset composed by a total of3,165 objects
(0.65% of the whole training set) of which2,918 are of the
classnon-face(0.62% of the class objects), and247 of the
classface (1.41% of the class objects).

Using a ten-fold cross validation, the PFCNN1 obtained an
accuracy of99.92% on the classnon-faceand an accuracy
of 99.96 on the classface, for a total accuracy of99.92%,
while the PFCNN2 obtained an accuracy of99.49% on the
classnon faceand an accuracy of99.73% on the classface,
for a total accuracy of99.50%. This result is comparable to
that obtained by the CNN (99.53%) and the MCNN (99.45%)
methods [22], [13]. To have an idea of the improvement of
the PFCNN algorithms, compare their execution time with the
35,283 seconds employed by the CNN rule and the40,102
seconds employed by the MCNN rule to complete the training
phase on the MIT Face dataset.

6.2.2 DARPA 1998

Table 8 reports the experimental results of the DARPA 1998
dataset. It can be observed that the sequential execution time is
very small and almost the same for all the strategies. Also, the
methods scale very well and the parallel execution time on16
nodes reduces to less then three seconds in all cases. Only the
PFCNN2-p does not scale so well. This can be explained by
noticing that the CPU cost is very small and hence even few
and small-sized additional communications may deteriorate
the total execution time. Maximum and average memory usage
are low owing to the small average value of|∆S|. On this
dataset, the PFCNN1 computed, after29 iterations, a subset
composed of a total of854 objects (0.19% of the whole
training set) of which238 are attacks (12.01% of the class
objects), and616 normal data (0.13% of the class objects). The
PFCNN2 computed, after24 iterations, a subset composed of a



12

(a) Execution time vs number of nodes
Seq 2 4 8 16

PFCNN1 38.06 19.02 9.60 4.85 2.45
PFCNN1-t 35.66 18.16 9.05 4.48 2.23
PFCNN1-p – 23.99 10.27 5.08 2.53
PFCNN2 41.87 21.00 10.57 5.35 2.78
PFCNN2-t 34.49 17.57 8.83 4.32 2.29
PFCNN2-p – 22.54 11.27 5.49 2.83

(b) Speedup
2 4 8 16

PFCNN1 2.00 3.96 7.84 15.54
PFCNN1-t 1.96 3.94 7.96 15.98
PFCNN1-p 1.49 3.47 7.02 14.10
PFCNN2 1.99 3.96 7.83 15.05
PFCNN2-t 1.96 3.91 7.98 15.07
PFCNN2-p 1.53 3.06 6.28 12.17

(c) Memory usage,p = 16 (MBytes)
Sequential Parallel

Max Avg Max Avg
PFCNN1 48.6 48.6 3.1 3.1
PFCNN1-t – – 3.1 3.1
PFCNN1-p – – 3.4 3.2
PFCNN2 48.8 48.7 3.3 3.2
PFCNN2-t – – 3.3 3.2
PFCNN2-p – – 3.8 3.3

TABLE 8
DARPA 1998 dataset: experimental results.

total of 926 objects (0.20% of the whole training set) of which
246 are attacks (12.42% of class objects), and680 normal data
(0.15% of the class objects).

Finally, using a ten-fold cross validation, the PFCNN1
obtained an accuracy of99.99% on the classnormal and an
accuracy of93.83 on the classattack, for a total accuracy of
99.96%, while the PFCNN2 obtained an accuracy of99.96%
on the classnormal and an accuracy of92.23% on the class
attack, for a total accuracy of99.50%.

6.2.3 Forest Cover Type

Table 9 reports the experimental results concerning the Forest
Cover Type dataset. All the PFCNN rules are very fast.
But, even if the PFCNN1 basic strategy exhibits, as usual,
an excellent speedup, it must be said that the speedup of
PFCNN on this dataset is worse than that observed on the
other datasets. This is especially evident for the PFCNN-t
strategies, due to the large size|D| of the setD composed of
the pairwise distances among elements of the current subset
S and elements of the current incremental subset∆S. Recall
that in the PFCNN-t strategy the computation of the distances
in the setD is not parallelized. As a matter of fact the
maximum value assumed by|∆S| is about1,800 (8,000, resp.)
for PFCNN1 (PFCNN2, resp.) rule. As a direct consequence
the PFCNN-p strategies waste a lot of memory. Obviously,
the use of the PFCNN-b strategies would improve the usage
of memory.

The PFCNN1 computed a subset composed of a total
of 39,799 objects (8.04% of the whole training set), while
PFCNN2 computed a subset composed of41,164 objects
(8.31%). Using a ten-fold cross validation, the PFCNN1 and
PFCNN2 obtained an accuracy respectively of99.98% and
99.96%.

(a) Execution time vs number of nodes
Seq 2 4 8 16

PFCNN1 452.22 226.26 113.29 56.55 30.92
PFCNN1-t 235.42 126.93 72.50 45.32 32.62
PFCNN1-p – 145.23 84.20 44.71 24.18
PFCNN2 469.89 235.58 120.36 64.67 43.97
PFCNN2-t 63.36 41.18 31.75 26.34 27.08
PFCNN2-p – 42.65 23.93 14.15 10.48

(b) Speedup
2 4 8 16

PFCNN1 2.00 3.99 8.00 14.63
PFCNN1-t 1.85 3.25 5.19 7.22
PFCNN1-p 1.62 2.80 5.27 9.74
PFCNN2 1.99 3.90 7.27 10.69
PFCNN2-t 1.54 2.00 2.40 2.34
PFCNN2-p 1.49 2.65 4.48 6.05

(c) Memory usage,p = 16 (MBytes)
Sequential Parallel

Max Avg Max Avg
PFCNN1 116.3 116.3 15.4 15.4
PFCNN1-t – – 15.4 15.4
PFCNN1-p – – 302.1 93.6
PFCNN2 133.9 124.3 32.9 23.3
PFCNN2-t – – 32.9 23.3
PFCNN2-p – – 1166.0 222.2

TABLE 9
Forest Cover Type dataset: experimental results.

6.3 Comparison with the Nearest Neighbor Rule
In order to validate effectiveness of the PFCNN rule, it is of
interest to compare the accuracy of the PFCNN rule with the
accuracy of the nearest neighbor classifier using the whole
training set as reference set during classification.

To this aim, the originalMit Face3 data set and theKDD
CUP 19994 data set were considered. These data sets rep-
resent two difficult classification tasks, since the class label
distribution of the training set is rather different from the class
label distribution of the data set. The class label distribution
of these data sets is reported in Table 10. In particular, the
column TRAIN reports the number of objects composing
the training set, the column TEST reports the number of
objects composing the test set, the column PFCNN1 reports
the number of objects composing the PFCNN1 condensed
set, and the column PFCNN2 reports the number of objects
composing the PFCNN2 condensed set.

The experiments pointed out the very good classification
accuracy associated with the PFCNN subset compared to the
classification associated with the whole training set. In fact,
the classification accuracy of the nearest neighbor rule using
the whole training set as reference set was93.43% and92.06%
for the MIT FaceandKDD CUP 1999data sets, respectively,
while the classification accuracy achieved by the PFCNN1
(PFCNN2) rule on these two data sets was, respectively,
93.43% (93.48%) and92.02% (91.97%).

6.4 Discussion

Now, let us briefly point out the strengths and weakness of
the different strategies, based on the experimental results and
complexity analysis.

3. http://cbcl.mit.edu/software-datasets/FaceData2.html
4. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
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MIT Face
CLASS TRAIN TEST PFCNN1 PFCNN2

Faces 2,429 472 84 80
Non-faces 4,548 23,573 338 296

KDD CUP 1999
CLASS TRAIN TEST PFCNN1 PFCNN2

Normal 97,277 60,593 401 477
Probe 4,107 4,166 206 253
DoS 391,458 229,853 258 369
U2R 52 228 27 27
R2L 1,126 16,189 60 64

TABLE 10
Class label distribution of the data sets used to compare

accuracy of the NN and PFCNN rules.

The PFCNN1 presents a very low communication overhead.
The same holds for the PFCNN2 provided that the data is
not very high dimensional. They scale almost linearly and
are suitable to massively parallel machines and to distributed
environments such as computational grids. The PFCNN2s
strategies may be faster than the PFCNN1s, but the latter al-
ways scale better than the former and they are preferable when
the dataset is very high dimensional. The triangle inequality
based strategies (PFCNN-t, PFCNN-p, and PFCNN-b) reduce
execution time, even if they may scale worse than the basic
PFCNN. The PFCNN-t is advantageous in grid environments,
in which communication is costly. The PFCNN-p is preferable
in parallel environments and may guarantee great time savings
over the PFCNN-t, but for datasets with large values of|∆S| it
wastes enormous quantities of memory. However, this problem
is solved by the PFCNN-b which, with an adequate dimension
of the buffer, uses the memory more efficiently and performs
even better in terms of total execution time.

7 CONCLUSIONS

A distributed algorithm for computing a consistent subset of a
very large data set for the nearest neighbor decision rule has
been presented and it is shown that it scales almost linearly. To
the best of our knowledge, this is the first distributed algorithm
for computing a training set consistent subset for the nearest
neighbor rule.

The different strategies are validated on a class of synthetic
datasets and on three large real-world datasets. The two basic
strategies, PFCNN1 and PFCNN2, scale almost linearly and
are suitable to distributed environment as computational grids.
Triangular inequality based strategies (PFCNN-t, PFCNN-p,
and PFCNN-b) further reduce execution time. The PFCNN-t
is advantageous in grid environments, the PFCNN-p is more
adapt to parallel architectures, whereas the PFCNN-b uses the
memory more efficiently.

Experiments performed on a parallel architecture, showed
that the algorithms scale well both in terms of memory
consumption and execution time. The algorithms were able
to manage very large collections of data in a small amount
of time, e.g. about12 minutes to process a dataset of about
0.6GB composed of fifty millions objects, or about one minute
to process a dataset of about0.7GB composed of half a million

361-dimensional objects. The subset computed on the latter
dataset was composed by the0.69% of the whole training set
and exhibited99.92% accuracy.
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APPENDIX

Derivation of the CPU cost.The CPU cost is expressed as the
number of distance computations required by a single node,
since the most costly operation performed is the computation
of the distance between two objects.

First of all, note that|Ti|m distances are needed by every
method to find the centroids of each class.

As for the PFCNN1 rule, during each iteration the elements
of Ti − (Sk ∩ Ti) are compared with the elements of|∆Sk|.
Thus, the distances computed are|Ti|m +

∑
k(|Ti| − |Sk ∩

Ti|)|∆Sk|. Assuming that the elements ofS are picked uni-
formly from each node, hence that|Sk ∩ Ti| =

nk

p
, this leads

to a total temporal costN(n+m)
p

− M
p

.
As far as the PFCNN1-t rule is concerned, letα ∈ (0, 1]

be the average fraction of points of∆S compared with each
point of Ti. The parameterα takes into account the fact that
the triangle inequality may reduce the effective number of
comparisons between elements ofTi and elements of∆S.
Then, during each iteration the elements ofTi− (Sk ∩Ti) are
compared withα|∆Sk| elements of∆Sk. Moreover, during
each iteration the distances between the elements ofSk and
the elements of∆Sk are computed. Summing up, the temporal
cost is|Ti|m+

∑
k[(|Ti|−|Sk∩Ti|)α|∆Sk|+ |Sk||∆Sk|], that

is N(αn+m)
p

+ M(p−α)
p

.
Consider now the PFCNN1-p rule. This time each node

computes only a1
p

fraction of the distances betweenSk

and∆Sk. Thus, the distances are|Ti|m +
∑

k[(|Ti| − |Sk ∩

Ti|)α|∆Sk| +
|Sk||∆Sk|

p
], which simplifies to N(αn+m)

p
+

M(1−α)
p

.
As PFCNN2 rules, in order to compute the representative

of the Voronoi enemies of the points inSk ∪∆Sk, these rules
require, in the worst case, to compute the distances between
each element ofTi − (Sk ∩ Ti) and the geometrical center of
the elements of its Voronoi cell having the same class label,
and then the distances between each element ofSk and the
class label centroids of its Voronoi cell.

Thus, the time complexity of the FCNN2 rules can be ob-
tained by adding to the cost of the corresponding PFCNN1 rule
the following number of distance computations:

∑
k[(|Ti| −

|Sk ∩ Ti|) + |Sk|(m − 1)] = |Ti|
∑

k 1 −
∑

k
nk

p
+ (m −

1)
∑

k nk = Nt
p

+ n(m− p+1
p

) ≤ Nt
p

+ nm. �

Derivation of the communication cost.The parallel–sum
and parallel–min methods are efficiently implemented on a

parallel environment using the MPI libraries [20] and on a grid
computing environment using the mpich-G2 libraries [24].

Consider the parallel functionparallel–sum(v1, . . . , vp),
where v1, . . . , vp are (arrays of) integer or floating point
numbers. Ifd is the size of eachvi andp are the processors
available, then this function exchangesdp ∗ 1 data.

To reduce the amount of data sent, the parallel function
parallel–min(〈v1, c1〉, . . ., 〈vp, cp〉), where v1, . . . , vp are
(arrays of) integers or floating point numbers andc1, . . . , cp

are floating point numbers, consists of two phases. During
the first phase, each node sends its identifieri together with
the valueci. During the second phase, the nodei∗ achieving
the valueci

∗

= min{c1, . . . , cp} sends the vectorvi
∗

to all
the other nodes. Thus, ifd is the size of eachvi, then this
function exchanges2p ∗ 1 + d ∗ 1 data. Furthermore, it must
be said that if a parallel function is invoked multiple times
in a cycle on the elements of an array, in order to reduce
the number of communications and consequently the start-
up latency, which in a distributed environment may be very
consistent, the code is optimized so that all the data involved
in the various communications is sent together.

Thus, if the size of the array isL, then theparallel–sum
exchangesLdp ∗ 1 data, while theparallel–min exchanges
2Lp ∗ 1 + Ld ∗ 1 data.

Now the communication costs of the various methods are
provided. To compute class centroids (Figure 4: steps 1-8) the
nodes send the following data:

C0 = mdp ∗ 1 + 2mp ∗ 1 +m(d− 1) ∗ 1

where the termmdp ∗ 1 concerns the sum of the elements of
each class (m(d − 1) words) plus the count of the elements
(m words), which must be multiplied for the number of nodes,
computed by employing theparallel–sum function, while the
term 2mp ∗ 1 +m(d − 1) ∗ 1 concerns the centroids of each
class, computed by employing theparallel–min function.

As far as the PFCNN1 rule is concerned, during each
iteration it executes aparallel–min function to determine the
nearest enemy of each element ofS ∪∆S (step 9(e)). Thus,
the data sent per iteration is:

C1(k) = 2n′
kp ∗ 1 + ∆nk+1d ∗ 1

Note that only the representative of the Voronoi enemies of
the Voroni cells containing at least a Voronoi enemy are sent
during the second phase of theparallel-min . Thus the overall
cost of the PFCNN1 (and also of the PFCNN1-t) rule isC0+∑

k C1(k) communications.
In addition, PFCNN1-p rule requires to exchange the

nk∆nk distances between the elements ofTi and the elements
of ∆S and the associated identifiers, and hence the total cost
is C0 +

∑
k(2nk∆nk ∗ 1 + C1(k)). Instead, for PFCNN1-

b, the2nk∆nk words are sent in blocks ofBUF words by
performing 2nk∆nk

BUF
communications. Hence, the total cost is

C0 +
∑

k(2n
′
kp ∗ 1 + ∆nk+1d ∗ 1 +BUF ∗ 2nk∆nk

BUF
).

Consider now the PFCNN2 rule. During each iteration it
executes two calls to parallel functions. In particular, data
n′
kdmp ∗ 1 is exchanged by theparallel–sum of step 9(d) of

Figure 4 to compute class centers of the Voronoi cells, while
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data2n′
kmp∗ 1+n′

kmd∗ 1 is exchanged by theparallel–min
of step 9(g) to compute class centroids of the Voronoi cells.
Summarizing, the data exchanged during each iteration is:

C2(k) = n′
kdmp ∗ 1 + 2∆nk+1mp ∗ 1 + ∆nk+1md ∗ 1.

As for the different PFCNN2 strategies, their cost can be
obtained analogously to that of the corresponding PFCNN1
strategy. �


