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Abstract. We consider the problem of unsupervised outlier detection
in large collections of data objects when objects are modeled by means of
arbitrary multidimensional probability density functions. Specifically, we
present a novel definition of outlier in the context of uncertain data under
the attribute level uncertainty model, according to which an uncertain
object is an object that always exists but its actual value is modeled
by a multivariate pdf. The notion of outlier provided is distance-based,
in that an uncertain object is declared to be an outlier on the basis of
the expected number of its neighbors in the data set. To the best of
our knowledge this is the first work that considers the unsupervised out-
lier detection problem on the full feature space on data objects modeled
by means of arbitrarily shaped multidimensional distribution functions.
Properties that allow to reduce the number of probability distance com-
putations are presented, together with an efficient algorithm for deter-
mining the outliers in an input uncertain data set.

1 Introduction

Traditional knowledge discovery techniques deal with feature vectors having de-
terministic values. Thus, data uncertainty is usually ignored in the analysis
problem formulation.

However, it must be noted that uncertainty arises in real data in many ways,
since the data may contain errors or may be only partially complete [1]. The
uncertainty may result from the limitations of the equipment, indeed physi-
cal devices are often imprecise due to measurement errors. Another source of
uncertainty are repeated measurements, e.g. sea surface temperature could be
recorded multiple times during a day. Also, in some applications data values are
continuously changing, as positions of mobile devices or observations associated
with natural phenomena, and these quantities can be approximated by using an
uncertain model.

Simply disregarding uncertainty may lead to less accurate conclusions or even
inexact ones. This has raised the need for uncertain data management techniques
[2], that are techniques managing data records typically represented by proba-
bility distributions [3–8]. In this work it is assumed that an uncertain object is
an object that always exists but its actual value is uncertain and modeled by a



multivariate probability density function [9]. This notion of uncertain object has
been extensively adopted in the literature and corresponds to the attribute level
uncertainty model viewpoint [9].

In particular, we deal with the problem of detecting outliers in uncertain data.
An outlier is an observation that differs so much from other observations as to
arouse suspicion that it was generated by a different mechanism [10]. As a major
contribution, we introduce a novel definition of uncertain outlier representing
the generalization of the classic distance-based outlier definition [11–13] to the
management of uncertain data modeled as arbitrary pdfs.

There exists several approaches to detect outliers in the certain setting [14],
namely, statistical-based [15], distance-based [16], density-based [17, 18], MDEF-
based [19], and others [14]. However, as far as the uncertain setting is concerned,
the investigation of the problem of detecting outliers is still in its infancy. Indeed,
only recently some approaches to outlier detection in uncertain data have been
proposed [8, 20, 21].

The method described in [8] is a density based approach designed for uncer-
tain objects which aims at selecting outliers in subspaces. The underlying idea
of the method is to approximate the density of the data set by means of kernel
density estimation and then to declare an uncertain object as an outlier if there
exists a subspace such that the probability that the object lies in a sufficiently
dense region of the data set is negligible. We note that, differently from our ap-
proach, in [8] the density estimate does not take directly into account the form
of the pdfs associated with uncertain objects, since it is performed by using equi-
bandwidth Gaussian kernels centered in the means of the object distributions.
Pdfs are then taken into account to determine the objects lying in regions of low
density, where the density is computed as before mentioned.

In [20] authors present a distance-based approach to detect outliers which
adopts a completely different model of uncertainty than ours, that is the exis-
tential uncertainty model, according to which an uncertain object x assumes a
specific value vx with a fixed probability px and does not exist with probabil-
ity 1 − px. According to this approach, uncertain objects are not modeled by
means of distribution functions, but are deterministic values that may either
occur or not occur in an outcome of the dataset. Hence, although [20] deals with
distance-based outliers, the scenario there considered is completely different from
that considered here, and the two methods are not comparable at all.

In [21] authors assume that the space of attributes is partitioned in a space of
conditioning attributes and a space of dependent attributes. An uncertain object
consists of a pair (l, r), where l is a tuple on a set of conditioning attributes and
r is a set of tuples on a dependent attributes, also called instances. To each
instance rj ∈ r a measure of normality is assigned, consisting in the probability
of observing rj given that both r and l have been observed. The normality of an
object is then obtained as the geometric mean of the normality of all its instances.
We notice that the approach presented in [21] essentially aims at detecting the
abnormal instances, that, loosely speaking, are the abnormal outcomes of the
uncertain objects. Thus, the task on interest in [21] is not comparable to that



considered here. Moreover, uncertain objects are modeled in a way which is
completely different from that considered here.

The contributions of this work are summarized next:

– To the best of our knowledge, this is the first work that considers unsuper-
vised outlier detection on the full feature space on data objects modeled by
means of arbitrarily shaped multidimensional distribution functions;

– We introduce a novel definition of uncertain outlier representing the gener-
alization of the classic distance-based outlier definition [11–13] to the man-
agement of uncertain data modeled as pdfs;

– Specifically, our approach consists in declaring an object as an outlier if the
probability that it has at least k neighbors sufficiently close is low. Hence, it
corresponds to perform a nearest neighbor density estimate on all the pos-
sible outcomes of the dataset. As such, its semantics is completely different
from previously introduced unsupervised approaches for outlier detection on
uncertain data;

– We provide an efficient algorithm for the computation of the uncertain
distance-based outliers, which works on any domain and with any distance
function.

The rest of the paper is organized as follows. Section 2 introduces the defini-
tion of uncertain outlier and some other preliminary definitions and properties.
Section 3 details how to compute the outlier probability. Section 4 presents the
outlier detection method. Section 5 illustrates experimental results. Finally, Sec-
tion 6 concludes the work.

2 Preliminaries

2.1 Uncertain Objects

Let (D, d) denote a metric space, where D is a set, also called domain, and d is a
metric distance on D. (e.g., D is the d-dimensional real space Rd equipped with
the Euclidean distance d).

A certain object v is an element of D. An uncertain object x is a random
variable having domain D with associated probability density function fx, where
fx(v) denotes the density of x in v.

We note that a certain object v can be regarded as an uncertain one whose
associated pdf fv is δv(t), where δv(t) = δ(0), for t = v, and δv(t) = 0, otherwise,
with δ(t) denoting the Dirac delta function.

Given a set S = {x1, . . . , xN} of uncertain objects, an outcome IS of S is a
set {v1, . . . , vN} of certain objects such that fxi(vi) > 0 (1 ≤ i ≤ N). The pdf
fS associated with S is

fS(v1, . . . , vN ) =

N∏
i=1

fxi(vi).

Given two uncertain objects x and y, d(x, y) denotes the continuous random
variable representing the distance between x and y.



2.2 Uncertain Outliers

Given an uncertain data set DS, Dk(x,DS \ {x}) (or Dk(x), for short) denotes
the continuous random variable representing the distance between x and its k-th
nearest neighbor in DS.

We are now in the position of providing the definition of uncertain distance-
based outlier.

Definition 1. Given an uncertain data set DS, an uncertain distance-based
outlier in DS according to parameters k, R and δ ∈ (0, 1), is an uncertain
object x of DS such that the following relationship holds:

Pr(Dk(x,DS \ {x}) ≤ R) ≤ 1− δ.

That is to say, an uncertain distance-based outlier is a data set object for
which the probability of having k data set objects besides itself within distance
R is smaller than 1− δ.

Let N be the number of objects in DS. In order to determine the probability
Dk(x), the following multi-dimensional integral has to be computed, where DS′

denotes the data set DS \ {x}:∫
DN

fx(v) · fDS′
(IDS′) · I[Dk(v, IDS′) ≤ R] dIDS′ dv,

where the function I(·) outputs 1 if the probability of its argument is 1, and 0
otherwise.

It is clear that deciding if an object is an uncertain distance-based outlier
is a difficult task, since it requires to compute an integral involving all the out-
comes of the data set. However, in the following sections we will show that this
challenging task can be efficiently addressed.

2.3 Further Definitions and Properties

W.l.o.g. it is assumed that each uncertain object x is associated with a finite
region SUP(x), containing the support of x, namely the region such that Pr(x ̸∈
SUP(x)) = 0 holds. For example, SUP could be defined as an hyper-ball or an
hyper-rectangle (e.g. the minimum bounding rectangle or MBR).

If the support of x is infinite, then SUP(x) is such that Pr(x ̸∈ SUP(x)) ≤ π,
for a fixed small value π, and the probability for x to exist outside SUP(x) is
considered negligible. In this case the error involved in the calculation of the
probability Pr(d(x, y) ≤ R) is the square of π.

For example, assume that the data set objects x are normally distributed
with mean µx and standard deviation σx. If the region SUP(x) is defined as
[µx−4σx, µx+4σx] then the probability π = Pr(x ̸∈ SUP(x)) is π = 2 ·Φ(−4) ≈
0.00006 and the maximum error is π2 ≈ 4 · 10−9.

Theminimum distance mindist(x, y) between x and y is defined as min{d(u, v) :
u ∈ SUP(x)∧v ∈ SUP(y)}, while the maximum distance maxdist(x, y) between
x and y is defined as max{d(u, v) : u ∈ SUP(x) ∧ v ∈ SUP(y)}.

Consider the two following definitions.



Definition 2. Let Dm
k (x) denote the smallest distance for which there exists

exactly k objects y of DS such that maxdist(x, y) ≤ Dm
k (x).

Definition 3. Let dmk (x) denote the smallest distance for which there exists
exactly k objects y of DS such that mindist(x, y) ≤ dmk (x).

The following two properties hold.

Property 1. Let x be an uncertain object for which dMk (x) is less or equal than
R. Then x is not an outlier.

As a matter of fact, if the condition of the statement of Property 1 is verified,
then each outcome of x has certainly k neighbors within radius R in every
outcome of the dataset.

Property 2. Let x be an uncertain object for which dmk (x) is greater than R. Then
x is an outlier.

3 Outlier probability

In this section we show how the value of Pr(Dk(x) ≤ R) can be computed, for
x a generic uncertain object of DS.

Given a certain object v and an uncertain object y, let pyv(R) = Pr(d(v, y) ≤
R) denote the cumulative density function representing the relative likelihood
for the distance between objects v and y to assume value less or equal than R,
that is

pyv(R) = Pr(d(v, y) ≤ R) =

∫
BR(v)

fy(u) du, (1)

where BR(v) denotes the hyper-ball having radius R and centered in v.
Let v be an outcome of the uncertain object x. For k ≥ 1, it holds

Pr(Dk(v,DS \ {x}) ≤ R) =

= 1−

 ∑
S⊆DS:|S|<k

∏
z∈S

pzv(R) ·
∏

z∈DS\S

(1− pzv(R))

 , (2)

that is one minus the probability that less than k data set objects lie within
distance R from v.

Thus, the probability Pr(Dk(x) ≤ R) can be eventually obtained as follows:

Pr(Dk(x) ≤ R) =

∫
D
fx(v) · Pr(Dk(v,DS \ {x}) ≤ R) dv. (3)

Probability values pyv(R) depend on the objects v and y, and on the real
value R, and involve the computation of one integral with domain of integration
D (more precisely, the hyper-ball in D of center v and radius R).



Algorithm 1: UncertainDBOutlierDetector

// Candidate selection phase
1: Determine the set OutCands of candidate outliers by detecting objects x such

that dMk (x) > R
// Candidate filtering phase

2: Set Outliers to the empty set
3: foreach x in OutCands do
4: if dmk (x) > R then
5: Insert x into Outliers;

6: else
7: if Pr(Dk(x) ≤ R) ≤ 1− δ then
8: Insert x into Outliers;

9: return the set Outliers

It is known [22] that given a function g, if m points w1, w2, . . ., wm are
randomly selected according to a given pdf f , then the following approximation
holds: ∫

g(u) du ≈ 1

m

m∑
i=1

g(wi)

f(wi)
. (4)

Thus, in order to compute the value pyv(R) reported in Equation (1), the function
gyv(u) such that gyv (u) = fy(u) if d(v, u) ≤ R, and gyv (u) = 0 otherwise, can be
integrated by evaluating the formula in Equation (4) with the points wi randomly
selected according to the pdf fy. This procedure reduces to compute the relative
number of sample points wi lying at distance not greater than R from v, that is

pyv(R) =
|{wi : d(v, wi) ≤ R}|

m
. (5)

Let DSv be the subset of DS \ {x} such that DSv = {y ∈ DS \ {x} :
mindist(v, y) ≤ R}. Probability Pr(Dk(v,DS \ {x}) ≤ R) depends on probabil-
ities pyv(R) for the objects y belonging to the set DSv.

Equation (2) can be computed on the objects in the set DSv by means of a
dynamic programming procedure, as that reported in [23], in time O(k · |DSv|),
that is linear both in k and in the size |DSv| of DSv.

4 Algorithm

In this section we describe the algorithmUncertainDBOutlierDetector that mines
the distance-based outliers in an uncertain data set DS of N objects.

The algorithm is reported in figure. It basically consists of two phases: the
candidate selection phase, and the candidate filtering phase.

The candidate selection phase (see step 1 in the figure) is described next. As
stated in Section 2 the uncertain objects x of DS satisfying dMk (x) > R are a



superset of the outliers in DS, a suitable set OutCands of uncertain candidate
outliers can be obtained by considering DS as a set of certain objects equipped
with the certain distance maxdist. Indeed, in this case the certain outliers in DS
are precisely the objects x of DS such that dMk (x) > R. Thus, an efficient certain
outlier detection algorithm can be exploited to select the candidate outliers. In
particular, in step 2 the state of the art certain distance-based outlier detection
algorithm DOLPHIN is employed [24].

After having determined the set of candidate outliers OutCands, the candi-
date filtering phase (see steps 3-9 in the figure) determines the set Outliers of
uncertain outliers in DS. The objects x of OutCands such that dmk (x) > R can
be safely inserted into Outliers since, as stated in Section 2, they are outliers
for sure. We call these objects ready outliers. As for the non-ready outliers x,
it has to be decided whether Pr(Dk(x) ≤ R) ≤ 1 − δ or not. We note that the
sets DSx associated with the object x in OutCands, which are needed in order
to compute the probability Pr(Dk(x) ≤ R), are computed during the candidate
selection phase.

Next we analyze the temporal cost of the algorithm. Let d denote the cost of
computing the distance d between two certain objects of D and also the distances
maxdist and mindist between two uncertain objects of D. Let Nc denote the
number of outlier candidates, let m denote the number of samples employed
to evaluate integrals by means of the formula in Equation (5), let mc ≤ m
denote the mean number of samples needed to decide if Pr(Dk(x) ≤ R) ≤ 1− δ,
and let Nn denote the mean size of the sets DSx, for x a candidate outlier. The
worst case cost of the candidate selection phase (step 1) corresponds to O(kpNd),

where p ∈ (0, 1] is an intrinsic parameter of the data set at hand (for details,
we refer the reader to [24], where it is shown that the method has linear time
performance with respect to the data set size). As for step 7, for each outcome v of
x, computing the probability Pr(d(v, y) ≤ R), with y ∈ DSv, costs O(md), while
computing the probability Pr(Dk(v,DS \ {x}) ≤ R) costs kNn. Thus, deciding
for Pr(Dk(x) ≤ R) ≤ 1 − δ costs mcNn(md + k). As a whole, the candidate
filtering phase costs O(NcmcNn(md+k)). Thus, the last phase of the algorithm
is the potentially heaviest one, since it involves integral calculations needed to
compute the outlier probability. In order to be practical, the algorithm must be
able to select a number of outlier candidatesNc close to the value αN of expected
outliers (α ∈ [0, 1]) and to keep as lower as possible the number mc ≪ m of
integral computations associated with the terms Pr(Dk(v,DS \ {x}) ≤ R).

5 Experimental results

In this section, we describe experimental results carried out by using the Uncer-
tainDBOutlierDetector algorithm. In all the experiments, we employ the follow-
ing parameters: the number of neighbors was set to k = ⌊ϱN⌋, with ϱ = 0.001,
the probability threshold δ is set to 0.9, m0 to 30 and m to 100. The experi-
ments are conducted on a Intel Xeon 2.33 GHz based machine under the Linux
operating system.



5.1 Data sets employed

In order to evaluate the performance of the introduced method, we performed
two sets of experiments.

Firstly, we considered a family of synthetic data in order to show the scala-
bility of the approach when the number of objects and the number of dimensions
of the data set increases. Secondly, we considered two families of real data sets
in order to study how parameters influence the number of candidate outliers and
of ready outliers.

Each data set is characterized by a parameter γ (also called spread) used to
set the degree of uncertainty associated with data set objects.

As for the Synthetic data sets, a family differing for the number N of un-
certain objects and the number D of attributes is generated according to the
following strategy. The uncertain objects in each data set form two normally
distributed separated clusters with mean (−10, 0, . . . , 0) and (10, 0, . . . , 0), re-
spectively. Moreover, the 3� of the data set objects are uniformly distributed
in a region lying on the hyper-plane x = 0 (that is to say, their first coordinate is
always zero). Uncertain objects are randomly generated and may use a normal,
an exponential or a uniform distribution whose spread is related to the standard
deviation of the overall data by means of the parameter γ.

As far as the real data sets are concerned, we employed two 2-dimensional
data sets from the R-Tree Portal1, that are Cities, containing 5,922 city and
village locations in Greece, and US Point, containing 15,206 points of populated
places in USA. For both data sets, a family of uncertain data sets has been
obtained as follows. An uncertain object xi has been associated with each certain
object vi in the original data set, whose pdf fxi(u) is a two-dimensional normal,
uniform or exponential randomly selected distribution centered in xi and whose
spread is, again, related to the standard deviation of the overall data by means
of the parameter γ.

5.2 Scalability analysis

These experiments are intended to study the scalability of the method when the
size of the dataset increases both in terms of the number of objects and in terms
of the number of dimensions.

All the experiments are conducted with three different values of the param-
eter γ, namely 0.02, 0.05 and 0.1, in order to show how the method behaves for
different levels of uncertainty.

Figure 2 on the left shows the scalability of the method with respect to the
number N of data set objects. In this experiment, N has been varied between
10,000 and 1,000,000, while the number of dimensions D has been held fixed to
3. These curves show that the method has very good performances for different
values of spread. In particular, the execution time is below 1,000 seconds even
for one million of objects, confirming that the method is able to manage large
data sets.
1 See http://www.rtreeportal.org.
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Fig. 2: Scalability with respect to the data set size and the number of dimensions
for the Synthetic data set family.

Conversely, Figure 2 on the right shows the scalability of the method with
respect to the number of dimensions D of the data set. In this case the number
of objects has been held fixed to 10,000. Also in this case, time performances are
good. The execution time clearly increases with the dimensionality, due to the
increasing cost of evaluating outcomes of the distributions, but in this experi-
ments remained below 100 seconds even for 10-dimensional data sets, confirming
that the method can be profitably employed to analyze multidimensional data.

We studied also the accuracy of the method. Figure 1a reports the F-score as a
function of the radius R. The F-score is a well known measure used to evaluate
the accuracy of a method. Specifically, the F-score is a combined measure of
precision and recall, where the former is the ratio between the number of outliers
returned by the method and the total number of objects returned by the method,
while the latter is the ratio between the number of outliers returned by the
method and the total number of outliers in the dataset. In order to compute
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Fig. 3: Experimental results.

such measures, it is assumed that the actual outliers are all and only the objects
lying in the hyper-plane x = 0.

In the figure three curves are reported, each referred to a different value of
spread. Such curves highlight the efficiency of the approach. Indeed, for values
of radius above 1.5 the F-score is equal to 1 for every considered spread, and for
spread equal to 0.02 and 0.05 the F-score is almost always above 0.9 for every
radii considered. For the highest spread and the lowest radius considered, the
F-score lowers. This situation can be understood by considering table in Figure
1b which reports the number of outliers returned by the method.

It can be seen that for spread equal to 0.1 and radius set to 1, the number
of outliers returned by the method is notably larger than the actual number
of outliers. However, all the clear outliers (those lying in the hyper-plane) are
correctly retrieved by the method but the method start to consider as outliers
the objects lying in the tails of the distributions associated with the clusters
(that we have not considered as outliers).



5.3 Sensitivity analysis

In this section, we study the behavior of the algorithm on the data sets Cities and
US Points in order to study how parameters influence the number of candidate
outliers and of ready outliers. Different values for the radius R and for the spread
γ (γ ∈ {0.05, 0.1}) have been considered.

Figure 3 shows the result of these experiments. The first column shows results
on the Cities data set, while the second column shows results on the US Points
data set. The first row concerns experiments for γ = 0.05, while the second one
for γ = 0.10. The diagrams report the number of candidate outliers detected at
the end of the candidate selection phase (bar on the left), the actual number of
outliers detected (middle bar), and the number of non-ready outliers (bar on the
right). From the figure it is clear the effect of the radius on the efficiency of the
method and on the number of actual outliers. The dashed line represents the
number αN , with α = 0.003. It is clear that a proper value for the radius has
to be selected in order to control the actual number of outliers and, moreover,
that if the radius is properly determined, the computational effort of the method
results negligible (see the first two rows of the following table).

The following table shows the execution times (in seconds) of the candidate
filtering phase of the algorithm.

R
Cities

R
US Points

s = 0.05 s = 0.10 s = 0.05 s = 0.10

30,000 0.01 0.05 1.75 0.07 0.29
27,500 0.02 0.09 1.50 0.08 0.97
25,000 0.03 0.17 1.25 0.14 9.17
22,500 0.03 0.47 1.00 0.30 18.77
20,000 0.04 2.04 0.75 0.41 64.07

Since the time sensibly increases only when the number of candidate outliers
is very different from the desired one, the table confirms that by properly tuning
the value of the radius the UncertainDBOutlierDetector algorithm is able to
solve very efficiently the computationally heavy uncertain distance-based outlier
detection problem.

6 Conclusions

In this work, a novel definition of uncertain outlier has been introduced to deal
with multidimensional arbitrary shaped probability density functions and rep-
resenting the generalization of the classic distance-based outlier definition.

Specifically, our approach corresponds to perform a nearest neighbor density
estimate on all the possible outcomes of the dataset and, to the best of our
knowledge, has no counterpart in the literature.

Moreover, it has been presented a method to efficiently compute the uncer-
tain outliers, thus overcoming the difficulties raised by the introduced definition.
Experiments have confirmed the effectiveness and the efficiency of the approach.
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