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Preliminaries

What is game theory about?

@ Game theory helps in understanding how decisions are
taken by rational agents (players)

@ Various game models to support diverse analysis
scenarios



Preliminaries

Coalitional games

@ A coalitional game G:

o N, the set of players that can form coalitions
e v:2N — R, worth function, assigns to each coalition S C N
the worth v(S) which players in S obtain by cooperating

@ Outcome of G: a vector of payoffs (x;);cy € RINI, that
specifies the distribution of the worth granted to each
playerin N



Preliminaries

Coalitional games

@ Fundamental problem: characterizing solution concepts,
capturing most desirable outcomes (fair worth distributions)

@ Issue widely addressed in the theory: tell a given solution
to suitably render the intuition of fairness and stability

@ Well-known and accepted solution concepts are the stable
sets, Shapely value, the core, the kernel, the bargaining
set, and the nucleolus
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Example

@ Multiple users route network traffic through a switch, which
has a flow-dependent delay (cost)

@ The queueing delay cost has to be shared among the
users

@ Users are self-motivated

Modeled as a coalitional game, a suitable solution concept (the
Shapley value, in this case) establishes fair cost sharing.
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Premises

@ Dealing with representable games: avoid the exponential
blow-up of explicitly representing 2" worth values

@ Complying with the bounded rationality principle that
decision making cannot imply unbounded resources to
support reasoning

o Captured by assessing the amount of needed reasoning
resources via complexity classes
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Graph games

Deng and Papadimitriou® considered the setting of graph
games. Let N be the players. A game is a weighted undirected
graph G = ((N, E), w), where:

@ the list w encodes the edge weighting function: w(e) € R
weighs the edge e € E

@ Foracoaliton S C N, v(S) = > ccgjecs W(e)

20n the complexity of cooperative solution concepts, Mathematics of
Operations Research, 19(2), 1994
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An example of a graph game

Worths for some sample coalitions:
° v({a}) = 0; v({b}) = 0; v({a,b}) = 2; v({a,c}) = 2;
@ v({b,c,d})=0;v({a b,c,d}) =7,
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Graph games

Several complexity results were provided in this setting:
@ checking whether the core is non-empty is co-NP-complete

@ checking whether an imputation is in the bargaining set is
NP-hard

@ a polynomial-time computable characterization for the
Shapely value was provided

@ the nucleolus was shown to coincide with the Shapely
value, for non-negative components
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Graph games

@ But several questions were explicitly left open regarding
solution concepts in the settings of both graph games and
general compact coalitional games

@ Although Deng and Papadimitriou’s work has gained a
prominent role through years, several of those questions
have been left unanswered
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Contribution |

We solved several of those open problems, by showing that, for
graph games:
@ Checking whether an outcome is in the kernel is
AF-complete;
@ Checking whether an outcome is the nucleolus is
AF-complete; and,
@ Checking whether an outcome is in the bargaining set is
n%-complete.

Moreover, we have analyzed some generalizations and
specializations of graph games
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Contribution Il

@ Generalizations: for Bilbao’s polynomial characteristic form
games (v(S) computed by an oracle requiring time
polynomial in |N|)

@ we show that nothing has to be paid for this generality:
checking membership in the kernel, the bargaining set or
the nucleolus are stillin AS, NZ, and A%, resp.

@ Specializations: in graph g. having bounded tree-width,
membership in the kernel is feasible in polynomial time



Solution concepts

Some preliminary definitions

@ A vector (x;);cn (With x; € R) is an imputation of G if
Y ienXi = V(N) and x; > v({i}), forall i e N

@ The set of all the imputations of G is denoted by X(G)

@ 7;; is the set of all coalitions containing player / but not
player j
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The Kernel

@ The excess e(S, x) of S at the imputation x € X(G), is
v(S) — x(S), with x(8) = > _;cg Xi

@ The surplus s;(x) of i against j at x is
sij(X) = maxsez, ; &(S, X)

Definition

The kernel 22 (G) of a game G = (N, v) is the set: 7 (G) =
{x e X(9) | sij(x) > s1i(x) = x; = V({j}),Vi,j € N, i # j}.
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The Bargaining set

@ For an imputation x, (y, S) is an objection of i againstj to x
ifSeZj,y(S)=v(S),and yx > xc forall k € S

@ A counterobjection to the objection (y, S) of i againstjis a
pair (z, T) where T € Z;;, z(T) = v(T), and zx > xi for all
ke T\Sandzx > ycforalke TNS

@ If there is no counterobjection to (y, S), (v, S) is a justified
objection.

Definition

The bargaining set #(G) of G is the set of all imputations to
which there is no justified objection.




Solution concepts

The Nucleolus

@ For an imputation x, define the vector
Q(X) = (6(81 ) X)a 6(827 X)? R e(82"—1 ; X))
with coalition excesses arranged in non-increasing order

@ For imputations x, y, 0(x) precedes 6(y) (0(x) < 0(y)), if
(39)(vi < q)(0(x)[i] = 0(y)li] A 6(x)[q] < 6(y)[al)

Definition

The nucleolus ./ (G) of a game G is the set

N(G) ={x € X(G) | By € X(G) s.t. O(y) < 0(x)}2

@For any game G, .4 (G) is a singleton




Hardness results

Hardness results I: The kernel

Let G be a graph game, and x an imputation of G. Then
deciding whether x belongs to # (G) is AY-hard




Hardness results

Hardness of the Kernel: Proof sketch |

@ Let o = ¢y A ... A Ccm be a B3CNF satisfiable Boolean
formula over the set of ordered variables {ay, ..., an}

@ The AF-hard problem we use is establishing if ay = 1 in
the lexicographically-maximal assignment making ¢ true

@ Based on ¢, we build a graph K(¢) = ((N,, E,), w)



Hardness results

Hardness of the Kernel: Proof sketch Il

The nodes N, (players):
@ a variable player «;, for each variable «; in ¢
@ a clause player c;, for each clause ¢; in ¢

@ a literal player (; ; (either £; j = a; j or ¢; ; = -« j), for each
literal ¢; (¢; = «; or £; = —«j, respectively) as occurring in ¢;

@ two special players “chall’ and “sat”.



Hardness results

Hardness of the Kernel: Proof sketch Il

The edges E,:
@ Positive edges:
e {c, ¢}, with w({c;, ¢;j}) = 2"*3, for each literal ¢; occurring
in ¢

e {chall,o;}, with w({chall,o;}) = 2/, foreach1 <i<n
e {sat,a;}, with w({sat,o;}) = 2/, foreach2 <i<n

e {sat,ay}, with w({sat,ay}) = 2" 4 2°



Hardness results

Hardness of the Kernel: Proof sketch IV

@ “Penalty” edges:
o {4, tij} with w({¢;, 0 ;}) = —2M+M7 for each pair of
literals ¢; and ¢;; occurring in ¢;

o {O(,‘J‘, _\Oéj,]‘/} with W({a,;’j, —\Oz,')/'r}) = _2m+n+7’ for each
variable «; occurring positively in ¢; and negated in ¢;

o {oz,-, _|Oé,'7/'} with W({a,-, —u,-ﬁ,-}) = _2m+n+7’ for each variable
«j oceurring negated in ¢

@ “Normalizer” edge: {chall, sat} with
w({chall, sat}) =1 =3 ece |es(chalsary W(€)
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Hardness of the Kernel: Proof sketch V

---- penalty edges
= normalizer edge

Figure: The game K($), where $ = (a1 Voo Vag) A(—ay Vag Vag)
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Hardness of the Kernel: Proof sketch VI

@ Consider x: x5+ = 1 and for all i # sat, x; = 0; x is an
imputation by the definition of w({chal, sat})

@ By definition of kernel, since sat is the only player for which
Xsat > V({sat}), x € ' (K(¢)) iff, for each player i # sat

maxSGI,-’sa, 6(87 X) S maXSGIsat’j e(S7 X)

@ But, for each player i ¢ {sat, chall},
MaXser, ., €(S, X) < MaXser,,,; €(S; X)
because {sat, chall} € sy
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Hardness of the Kernel: Proof sketch VII

@ Therefore, x € # (K(¢)) iff
maXSEIcha/l,sat e(s’ X) < maxsezsat,cha// e(S’ X)

@ By some calculations one finds that:

© MaXsez,y o (S, X) = mx 2M3 + max, 4 > 2i

ajlo(aj)=true
@ MAXSeZon cha (S X) =mx 23 +

maXy ¢ (|{a1 | o(aq) = true}| + Ea,\a (as) =t rue 2/) 1



Hardness results

Hardness of the Kernel: Proof skecth Vil

@ Therefore, by substituting: x € J# (K (¢)) iff
T+ max"):¢ Za,'|0'(a,-)=true 2! <
maX; e <Zai\a(ai):true 2/ + [{o [ o(aq) = true}’)

@ The last inequality being equivalent to x € 7 (K(¢)) if and
only if ¢ is true in the lexicographically maximum
satisfying assignment for ¢
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Hardness results Il

Let G be a graph game, and x an imputation of G. Then:
@ deciding whether x belongs to 4 (G) is AF-hard
@ deciding whether x belongs to (G) is N&-hard
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Hardness results Il: proof ideas

@ Nucleolus: the proof also uses a reduction of the problem
of deciding whether a4 is true in the lexicographically
maximum satisfying assignment of a given a 3CNF
Boolean formula

@ Bargaining set: the proof uses a reduction of the problem
of checking the validity of a quantified Boolean formula

¢ = (Ya)(38)¢(a, B)



Membership results

Intermezzo

@ Hardness results illustrated above are are tight
(corresponding membership results can be established)

@ We can do better, by proving membership results within
the more general setting of compact games

@ A class of games C is compact if, for every game G € C, the
game encoding (whose size is ||G||) includes the set N of
all players (so that, |N| < ||G||), and the function v is given
by an oracle that computes v(S) in time polynomial in ||G||.
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Kernel: The membership theorem

Forany G € Cqq, with Ccqg compact: deciding whether an
imputation x belongs to ¢ (G) is feasible in AY
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Membership of the Kernel: Proof Idea

@ we can compute in polynomial time the value v({i}) for
each playerie {1,...,n}
@ for each pair of players i and j, compute s; ;(x):
e representing v(S) requires polynomially many bits
@ a binary search over the range of the values of the worth
functions requires a polynomial number of steps
@ in NP we can check, for any value h in this range, whether
there is a coalition S such that v(S) — x(S) > h, yielding
s1,i(X)
@ therefore, it requires polynomially-many oracle calls to
check that, for each pair of players i and j such that
X; # v({j}), it holds that s; ;(x) < s;;(x).
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Bargaining set: Some notes

@ It was argued that telling an imputation to be in the
bargaining s. is in N4 for graph g. — guess an objection
(NP) and check if a counterobjection exists (co-NP)

@ This result holds, but it is restricted to games where values
are represented with polynomially many bits

@ We show that the membership in I'If holds independently
of the precision used to represent the reals in the game

@ A characterization of a player i having a justified objection
against a player j to x through S is preliminary
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Bargaining set: A useful lemma

Lemma

Player i has a justified objection against player j to x through
coalition S € T; ; iff there exists a vector y € RI®l such that:

a) y(S) =v(S)
b) yx > xx, foreachk € S
c) v(T)<y(TNS)+x(T\S),VT € Z;;.
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Bargaining set: The membership theorem

For any G € Cqq, deciding whether an imputation x belongs to
#(G) is feasible in NE
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Bargaining set: Proof sketch |

@ The proof goes by showing that the complementary
problem of deciding if x ¢ #(G) is in £§

@ One may guess two players i and j, and a coalition S € 7;,
and then check if the system of inequalities LP of the
previous lemma has a solution
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Bargaining set: Proof sketch Il

@ For this last check, a co-NP oracle can be used:

e LP has |S] variables (yi,...,¥s))

o by Helly’s Theorem, for a collection C = {cy,...,cp} of
convex subsets of R”, ﬂc,»ec ¢ = @ implies for a collection
C'CCtloexistst. [C'|<n+1and(\,ce Ci=9

@ hence, if LP has no solutions, there is a subset Lp’ of LP
including | S| + 1 inequalities at most that has no solutions

o therefore, one may guess LP’, and check in polynomial time
that Lp’ is infeasible
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Nucleolus: The membership theorem

For any G € Ccg, computing A (G) is feasible in FAY.

For any G € Cqq, deciding if an imputation is in A (G) is in A2P .
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Nucleolus: Proof idea

@ We can show that it is possible to build in FA’2° a sequence
of short encodings of n linear programs, each of which
depends on the previous element in the sequence

@ And that the nucleolus of the given compact game is
computable in polynomial time from the last element of this
sequence



A tractability result

Some notes

@ To date, we have a single tractability result to illustrate,
regarding the kernel of a bounded treewidth graph game

@ The result is proved by showing that computing the
coalition over which the maximum excess at x is achieved
can be expressed as an optimization problem over
monadic second order logic for graph g. of bounded
treewidth



A tractability result

The theorem

LetG = ((N, E),w) be a graph game such that (N, E) has
tree-width bounded by k, and let x be an imputation of G. Then,
deciding whether x € .#(G) can be done in polynomial time.




Conclusions and open problems

Conclusion

@ An account of the computational complexity of main
solution concepts in compact coalitional games:

@ Several open problems regarding the setting of graph
games have been answered

@ Several additional complexity results about generalizations
of graph games have been provided

o A tractability result regarding the kernel in graph games has
been proved
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Open problems

@ Characterizing the tractability of solution concepts is
interesting, within and outside the setting of graph games

@ Other solution concepts pose other problems. A notable
question is deciding whether a game has a Von-Neumann
and Morgenstern solution (aka, stable set) or not
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Conclusion

Many thanks for your kind attention
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